Great Expectations 数据验证框架中的 DataFrame 数据泄露问题分析
2025-05-22 10:50:44作者:庞队千Virginia
在数据质量验证工具 Great Expectations(GX)1.0.1版本中,我们发现了一个重要的数据安全问题。当使用内存中的pandas数据源进行数据验证时,整个DataFrame会被完整地记录在验证结果JSON文件中,这可能导致敏感数据泄露。
问题背景
Great Expectations 是一个流行的数据质量验证框架,它允许用户定义数据期望并验证数据集是否符合这些期望。在最新版本中,当用户通过内存中的pandas DataFrame创建数据源和资产定义时,框架会将整个数据集序列化到验证结果中。
问题表现
具体表现为:
- 使用pandas DataFrame作为内存数据源
- 创建相关资产和批次定义
- 运行期望套件验证数据
- 生成的验证结果JSON文件中,完整的数据集出现在meta部分的active_batch_definition.batch_identifiers.dataframe键下
技术分析
这个问题源于框架在序列化验证结果时,没有正确处理内存数据源的数据屏蔽。与已经实现的batch_parameters数据屏蔽不同,DataFrame内容被完整保留。
对于大型数据集(特别是Spark表),这个问题尤为严重,因为:
- 整个表会被序列化为JSON
- 可能导致内存问题和性能下降
- 增加了敏感数据暴露的风险
解决方案
开发团队已经意识到这个问题并迅速响应。修复方案包括:
- 在验证流程的更早阶段应用数据屏蔽
- 防止DataFrame被不必要地序列化
- 保持与batch_parameters一致的数据处理方式
修复已经合并到主分支,并计划在下一个版本中发布。
最佳实践建议
在使用Great Expectations时,建议:
- 对于包含敏感数据的内存数据集,暂时避免使用1.0.1版本
- 等待包含修复的新版本发布
- 定期检查验证结果文件,确保不包含意外数据
- 对于生产环境,考虑使用其他数据源类型而非内存DataFrame
总结
数据安全是数据质量工具的核心要求之一。Great Expectations团队对此问题的快速响应显示了他们对数据安全的重视。用户应关注新版本的发布,并及时升级以获得修复。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.27 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
339
暂无简介
Dart
686
160
Ascend Extension for PyTorch
Python
233
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
37
31