Thuthesis 模板目录行间距调整技术解析
清华大学学位论文 LaTeX 模板 Thuthesis 是广泛应用于学术论文写作的优秀工具。在使用过程中,用户可能会遇到目录行间距不符合学校格式要求的问题,特别是当模板要求目录行间距固定为20磅且段前段后间距均为0磅时。本文将深入分析这一问题并提供专业解决方案。
问题现象分析
在 Thuthesis 模板生成的目录中,各章标题之间的间距可能出现过宽的情况。这通常表现为:
- 章与章之间的垂直间距明显大于20磅
- 段前段后存在不必要的空白
- 整体目录排版不符合学校规定的格式要求
技术背景
LaTeX 的目录生成机制涉及多个底层命令和参数设置。Thuthesis 作为基于 LaTeX 的模板,其目录样式主要通过以下方式控制:
tocloft宏包提供的目录格式设置- 自定义的章节标题样式
- 间距参数(如
\lineskip和\parskip)
解决方案
要解决目录行间距问题,需要从以下几个方面进行技术调整:
-
修改行间距设置: 在文档类或宏包加载后,使用
\linespread命令调整行距。对于固定20磅的要求,可以设置为:\linespread{1.24} % 近似20磅行距(基于12pt字号) -
调整段间距: 清除段前段后间距:
\setlength{\parskip}{0pt} \setlength{\parindent}{2em} -
目录专用设置: 针对目录的特殊调整:
\usepackage{tocloft} \setlength{\cftbeforechapskip}{0pt} \renewcommand{\cftchapleader}{\cftdotfill{\cftdotsep}} -
章节标题样式: 确保章节标题样式不会引入额外间距:
\titleformat{\chapter}[display] {\normalfont\Large\bfseries} {\chaptertitlename\ \thechapter} {0pt} {\Large}
实现细节
-
精确行距计算: LaTeX 中的行距是相对于字体大小的倍数。假设基础字号为12pt,20磅行距对应的行距因子约为1.24(20/16.2,其中16.2是12pt字号的单倍行距)。
-
间距继承问题: 需要注意目录中的间距设置可能会被文档类或其它宏包的默认设置覆盖,因此调整代码应放在文档类加载之后、正文开始之前。
-
兼容性考虑: 上述修改应与 Thuthesis 模板的其它样式设置兼容,特别是当使用不同文档类选项(如学位类型)时。
最佳实践建议
-
局部调整: 建议将目录间距调整代码封装在单独的命令或环境中,避免影响文档其它部分的排版。
-
验证方法: 生成PDF后,可使用专业设计工具测量实际行距,确保精确符合20磅要求。
-
模板更新: 当 Thuthesis 模板更新时,应检查这些自定义设置是否仍然有效,必要时进行调整。
通过以上技术调整,用户可以精确控制 Thuthesis 模板生成的目录行间距,满足学校严格的格式要求。这些方法不仅解决了当前问题,也为处理类似排版需求提供了技术参考。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00