探索未来问答:pyLLMSearch - 高级RAG系统
pyLLMSearch是一个创新的开源包,旨在提供一个简洁而强大的问答(RAG)系统,它允许用户通过YAML配置与多个本地文档集合进行交互。这个系统的独特之处在于,它不仅支持基本的基于大语言模型(LLM)的RAG,而且还优化了多项组件,如文档解析、混合搜索、HyDE功能、聊天历史记录和深度链接等。
项目介绍
pyLLMSearch的核心目标是创建一个适应性强且易于使用的问答环境,它能够处理多种格式的文件,包括.md, .pdf, .docx等。该系统设计用来配合自定义的大型语言模型,并通过改进的文档解析、混合搜索策略以及深度学习嵌入技术,提供更准确的查询结果。
项目技术分析
1. 多格式支持
pyLLMSearch内置了对Markdown、PDF和Docx文件的智能解析器,还能通过Unstructured库处理其他常见格式。对于Markdown文件,它可以识别逻辑结构如标题、子标题和代码块;PDF则依赖于MuPDF;Docx解析器支持嵌套表格。
2. 深度学习嵌入
该系统利用ChromaDB存储从文档生成的密集嵌入,并支持Hugging Face和Sentence-Transformers模型生成嵌入。此外,还提供了SPLADE(稀疏+密集)嵌入来实现混合搜索,以提高查询效率。
3. 创新特性
pyLLMSearch引入了HyDE(假设文档嵌入),可显著提升跨领域查询的质量。多查询功能灵感来源于RAG Fusion,它通过生成不同的查询版本来扩大理解范围。它还支持聊天历史和问题上下文,增强交互体验。
4. 丰富的接口
项目不仅有简单的命令行界面(CLI)和Web界面,还支持各种嵌入式模型,如OpenAI、HuggingFace、Llama_cpp和LiteLLM/Ollama。此外,它还具有实验性的API供进一步扩展。
应用场景
pyLLMSearch适用于各种场景,包括但不限于:
- 知识库和文档检索:在企业内部用于快速查找和理解技术文档。
- 教育和研究:帮助学生和研究人员从大量文献中获取精确信息。
- AI助手:作为智能家居或个人智能助手的后端,提供个性化的信息检索服务。
项目特点
- 灵活性:支持多种格式和嵌入方法,适应不同需求。
- 高效性:通过重新排序和HyDE等技术提高搜索准确性。
- 易用性:提供CLI和Web界面,且文档详尽,便于上手。
- 拓展性:无缝对接多种大语言模型,提供广泛的API和接口。
结论
pyLLMSearch是一个强大且灵活的问答系统,它将改变我们与复杂信息交互的方式。无论你是开发者、研究人员还是信息需求者,pyLLMSearch都能帮助你在海量数据中找到你需要的答案。现在就加入,探索这个未来的问答工具吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00