首页
/ 探索未来问答:pyLLMSearch - 高级RAG系统

探索未来问答:pyLLMSearch - 高级RAG系统

2024-06-25 14:00:54作者:裘晴惠Vivianne

pyLLMSearch是一个创新的开源包,旨在提供一个简洁而强大的问答(RAG)系统,它允许用户通过YAML配置与多个本地文档集合进行交互。这个系统的独特之处在于,它不仅支持基本的基于大语言模型(LLM)的RAG,而且还优化了多项组件,如文档解析、混合搜索、HyDE功能、聊天历史记录和深度链接等。

项目介绍

pyLLMSearch的核心目标是创建一个适应性强且易于使用的问答环境,它能够处理多种格式的文件,包括.md, .pdf, .docx等。该系统设计用来配合自定义的大型语言模型,并通过改进的文档解析、混合搜索策略以及深度学习嵌入技术,提供更准确的查询结果。

项目技术分析

1. 多格式支持

pyLLMSearch内置了对Markdown、PDF和Docx文件的智能解析器,还能通过Unstructured库处理其他常见格式。对于Markdown文件,它可以识别逻辑结构如标题、子标题和代码块;PDF则依赖于MuPDF;Docx解析器支持嵌套表格。

2. 深度学习嵌入

该系统利用ChromaDB存储从文档生成的密集嵌入,并支持Hugging Face和Sentence-Transformers模型生成嵌入。此外,还提供了SPLADE(稀疏+密集)嵌入来实现混合搜索,以提高查询效率。

3. 创新特性

pyLLMSearch引入了HyDE(假设文档嵌入),可显著提升跨领域查询的质量。多查询功能灵感来源于RAG Fusion,它通过生成不同的查询版本来扩大理解范围。它还支持聊天历史和问题上下文,增强交互体验。

4. 丰富的接口

项目不仅有简单的命令行界面(CLI)和Web界面,还支持各种嵌入式模型,如OpenAI、HuggingFace、Llama_cpp和LiteLLM/Ollama。此外,它还具有实验性的API供进一步扩展。

应用场景

pyLLMSearch适用于各种场景,包括但不限于:

  • 知识库和文档检索:在企业内部用于快速查找和理解技术文档。
  • 教育和研究:帮助学生和研究人员从大量文献中获取精确信息。
  • AI助手:作为智能家居或个人智能助手的后端,提供个性化的信息检索服务。

项目特点

  • 灵活性:支持多种格式和嵌入方法,适应不同需求。
  • 高效性:通过重新排序和HyDE等技术提高搜索准确性。
  • 易用性:提供CLI和Web界面,且文档详尽,便于上手。
  • 拓展性:无缝对接多种大语言模型,提供广泛的API和接口。

结论

pyLLMSearch是一个强大且灵活的问答系统,它将改变我们与复杂信息交互的方式。无论你是开发者、研究人员还是信息需求者,pyLLMSearch都能帮助你在海量数据中找到你需要的答案。现在就加入,探索这个未来的问答工具吧!

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-CasesHarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4