Intel RealSense ROS 开发分支在Jetson平台上的CUDA编译问题解析
问题背景
在使用Intel RealSense ROS开发分支(development branch)时,用户在NVIDIA Jetson ORIN NX平台上遇到了编译问题。具体表现为在启用CUDA支持的情况下,构建过程失败并出现多个错误信息。
环境配置
用户环境配置如下:
- 相机型号:D455
- 操作系统:Ubuntu 20
- 硬件平台:NVIDIA Jetson ORIN NX
- SDK版本:librealsense 2.56.0开发分支
- ROS版本:Humble
- ROS Wrapper版本:开发分支
主要问题分析
1. CUDA编译参数错误
用户最初尝试使用colcon build --cmake-args -DBUILD_WITH_CUDA=ON命令进行构建,但该参数实际上是用于librealsense SDK本身的编译,而非ROS Wrapper。正确的ROS Wrapper GPU加速参数应为:
colcon build --cmake-args '-DBUILD_ACCELERATE_GPU_WITH_GLSL=ON'
2. API变更导致的编译错误
开发分支中引入了一些API变更,导致以下编译错误:
rs2::auto_calibrated_device类中缺少get_calibration_config和set_calibration_config方法rs2::motion_frame类中缺少get_combined_motion_data方法rs2::rotation_filter未定义
这些错误表明ROS Wrapper代码与最新librealsense SDK开发分支的API存在不兼容。
3. 版本冲突问题
用户发现系统中同时存在通过apt安装的2.55.1版本和手动编译的2.56.0版本,导致库文件引用混乱。特别是librealsense2-gl.so.2.55.1文件缺失的错误。
解决方案
1. 清理环境
彻底移除所有已安装的RealSense相关软件包:
sudo apt remove ros-humble-librealsense2
sudo rm -rf /usr/local/lib/librealsense*
2. 正确编译librealsense SDK
使用以下CMake参数编译librealsense SDK:
cmake ../ -DFORCE_RSUSB_BACKEND=true -DCMAKE_BUILD_TYPE=release -DBUILD_EXAMPLES=true -DBUILD_GRAPHICAL_EXAMPLES=true -DBUILD_WITH_CUDA=ON
3. 正确编译ROS Wrapper
使用正确的GPU加速参数编译ROS Wrapper:
colcon build --cmake-args '-DBUILD_ACCELERATE_GPU_WITH_GLSL=ON'
4. 版本一致性
确保librealsense SDK和ROS Wrapper都使用开发分支:
# 对于librealsense SDK
git checkout development
# 对于ROS Wrapper
git checkout ros2-development
技术建议
-
开发分支使用注意事项:开发分支包含实验性功能和API变更,不适合生产环境使用。如需稳定版本,建议使用官方发布版本。
-
GPU加速适用场景:CUDA加速主要优化点云生成、深度-彩色对齐和RGB色彩转换三个功能。如果应用不涉及这些功能,启用CUDA可能不会带来明显性能提升。
-
Aruco标记检测:对于需要Aruco标记检测的应用,可以考虑使用专为ROS2 Humble设计的aruco_ros包。
-
API兼容性:在升级开发分支时,应注意检查API变更日志,及时调整应用程序代码以适应新API。
总结
在Jetson平台上使用RealSense ROS开发分支时,需要注意版本一致性、正确的编译参数以及环境清理。开发分支虽然提供了最新功能,但也带来了API变更的风险。建议在非必要情况下使用稳定版本,或在升级前充分测试新版本兼容性。对于3D人体姿态检测等应用,确保正确配置GPU加速参数可以显著提升性能表现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00