OpenTelemetry-js中多采样策略的实现方案
2025-06-27 09:16:17作者:明树来
在分布式追踪系统中,采样策略是一个关键的设计考量。本文将深入探讨如何在OpenTelemetry-js中实现针对不同来源Span的差异化采样策略。
问题背景
在典型的应用场景中,我们可能需要对不同来源的追踪数据采用不同的采样策略。例如:
- 自动生成的数据库操作追踪(如Prisma)可能数量庞大但价值相对较低,需要采样
- 手动添加的关键业务追踪数量较少但价值高,需要全量收集
常见误区
开发者可能会尝试通过以下方式实现:
- 创建多个TracerProvider实例
- 为每个Provider配置不同的采样器
- 期望不同来源的Span自动路由到对应的Provider
然而,这种做法存在根本性问题:
- 大多数自动检测库(如Prisma)直接从全局API获取Tracer
- 破坏了追踪的上下文一致性
- 可能导致部分Span丢失
正确实现方案
OpenTelemetry提供了更优雅的解决方案 - 自定义Sampler实现。
核心思路
通过单一TracerProvider配合智能Sampler,根据Span特征动态决定采样策略:
- 对于关键业务Span(如手动添加)始终采样
- 对于其他Span(如Prisma生成)按比例采样
- 保持追踪链的完整性
实现示例
import { Sampler, SamplingDecision, SamplingResult } from '@opentelemetry/sdk-trace-base';
import { TraceIdRatioBasedSampler } from '@opentelemetry/core';
class CustomSampler implements Sampler {
private ratioSampler = new TraceIdRatioBasedSampler(0.1);
shouldSample(
context: Context,
traceId: string,
spanName: string,
spanKind: SpanKind,
attributes: Attributes,
links: Link[]
): SamplingResult {
// 关键业务Span全量采样
if (spanName.startsWith('business-critical')) {
return {
decision: SamplingDecision.RECORD_AND_SAMPLED,
attributes: {}
};
}
// 其他Span按比例采样
return this.ratioSampler.shouldSample(
context, traceId, spanName, spanKind, attributes, links
);
}
toString(): string {
return 'CustomSampler';
}
}
组合使用ParentBasedSampler
为确保子Span与父Span采样决策一致,建议结合ParentBasedSampler使用:
import { ParentBasedSampler } from '@opentelemetry/sdk-trace-base';
const sampler = new ParentBasedSampler({
root: new CustomSampler(),
remoteParentSampled: new AlwaysOnSampler(),
remoteParentNotSampled: new AlwaysOffSampler(),
localParentSampled: new AlwaysOnSampler(),
localParentNotSampled: new AlwaysOffSampler()
});
最佳实践建议
- 统一使用单一TracerProvider:避免多Provider带来的复杂性
- 基于Span特征决策:可通过spanName、attributes等识别Span来源
- 保持追踪完整性:确保同一追踪链上的Span采样决策一致
- 考虑性能影响:复杂采样逻辑可能增加开销
总结
OpenTelemetry-js通过灵活的Sampler接口,支持开发者实现精细化的采样策略。相比使用多个TracerProvider的方案,自定义Sampler既能满足差异化采样需求,又能保证追踪数据的完整性,是更优雅的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26