OpenTelemetry-js中多采样策略的实现方案
2025-06-27 17:22:13作者:明树来
在分布式追踪系统中,采样策略是一个关键的设计考量。本文将深入探讨如何在OpenTelemetry-js中实现针对不同来源Span的差异化采样策略。
问题背景
在典型的应用场景中,我们可能需要对不同来源的追踪数据采用不同的采样策略。例如:
- 自动生成的数据库操作追踪(如Prisma)可能数量庞大但价值相对较低,需要采样
- 手动添加的关键业务追踪数量较少但价值高,需要全量收集
常见误区
开发者可能会尝试通过以下方式实现:
- 创建多个TracerProvider实例
- 为每个Provider配置不同的采样器
- 期望不同来源的Span自动路由到对应的Provider
然而,这种做法存在根本性问题:
- 大多数自动检测库(如Prisma)直接从全局API获取Tracer
- 破坏了追踪的上下文一致性
- 可能导致部分Span丢失
正确实现方案
OpenTelemetry提供了更优雅的解决方案 - 自定义Sampler实现。
核心思路
通过单一TracerProvider配合智能Sampler,根据Span特征动态决定采样策略:
- 对于关键业务Span(如手动添加)始终采样
- 对于其他Span(如Prisma生成)按比例采样
- 保持追踪链的完整性
实现示例
import { Sampler, SamplingDecision, SamplingResult } from '@opentelemetry/sdk-trace-base';
import { TraceIdRatioBasedSampler } from '@opentelemetry/core';
class CustomSampler implements Sampler {
private ratioSampler = new TraceIdRatioBasedSampler(0.1);
shouldSample(
context: Context,
traceId: string,
spanName: string,
spanKind: SpanKind,
attributes: Attributes,
links: Link[]
): SamplingResult {
// 关键业务Span全量采样
if (spanName.startsWith('business-critical')) {
return {
decision: SamplingDecision.RECORD_AND_SAMPLED,
attributes: {}
};
}
// 其他Span按比例采样
return this.ratioSampler.shouldSample(
context, traceId, spanName, spanKind, attributes, links
);
}
toString(): string {
return 'CustomSampler';
}
}
组合使用ParentBasedSampler
为确保子Span与父Span采样决策一致,建议结合ParentBasedSampler使用:
import { ParentBasedSampler } from '@opentelemetry/sdk-trace-base';
const sampler = new ParentBasedSampler({
root: new CustomSampler(),
remoteParentSampled: new AlwaysOnSampler(),
remoteParentNotSampled: new AlwaysOffSampler(),
localParentSampled: new AlwaysOnSampler(),
localParentNotSampled: new AlwaysOffSampler()
});
最佳实践建议
- 统一使用单一TracerProvider:避免多Provider带来的复杂性
- 基于Span特征决策:可通过spanName、attributes等识别Span来源
- 保持追踪完整性:确保同一追踪链上的Span采样决策一致
- 考虑性能影响:复杂采样逻辑可能增加开销
总结
OpenTelemetry-js通过灵活的Sampler接口,支持开发者实现精细化的采样策略。相比使用多个TracerProvider的方案,自定义Sampler既能满足差异化采样需求,又能保证追踪数据的完整性,是更优雅的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193