OpenTelemetry-js中多采样策略的实现方案
2025-06-27 10:45:55作者:明树来
在分布式追踪系统中,采样策略是一个关键的设计考量。本文将深入探讨如何在OpenTelemetry-js中实现针对不同来源Span的差异化采样策略。
问题背景
在典型的应用场景中,我们可能需要对不同来源的追踪数据采用不同的采样策略。例如:
- 自动生成的数据库操作追踪(如Prisma)可能数量庞大但价值相对较低,需要采样
- 手动添加的关键业务追踪数量较少但价值高,需要全量收集
常见误区
开发者可能会尝试通过以下方式实现:
- 创建多个TracerProvider实例
- 为每个Provider配置不同的采样器
- 期望不同来源的Span自动路由到对应的Provider
然而,这种做法存在根本性问题:
- 大多数自动检测库(如Prisma)直接从全局API获取Tracer
- 破坏了追踪的上下文一致性
- 可能导致部分Span丢失
正确实现方案
OpenTelemetry提供了更优雅的解决方案 - 自定义Sampler实现。
核心思路
通过单一TracerProvider配合智能Sampler,根据Span特征动态决定采样策略:
- 对于关键业务Span(如手动添加)始终采样
- 对于其他Span(如Prisma生成)按比例采样
- 保持追踪链的完整性
实现示例
import { Sampler, SamplingDecision, SamplingResult } from '@opentelemetry/sdk-trace-base';
import { TraceIdRatioBasedSampler } from '@opentelemetry/core';
class CustomSampler implements Sampler {
private ratioSampler = new TraceIdRatioBasedSampler(0.1);
shouldSample(
context: Context,
traceId: string,
spanName: string,
spanKind: SpanKind,
attributes: Attributes,
links: Link[]
): SamplingResult {
// 关键业务Span全量采样
if (spanName.startsWith('business-critical')) {
return {
decision: SamplingDecision.RECORD_AND_SAMPLED,
attributes: {}
};
}
// 其他Span按比例采样
return this.ratioSampler.shouldSample(
context, traceId, spanName, spanKind, attributes, links
);
}
toString(): string {
return 'CustomSampler';
}
}
组合使用ParentBasedSampler
为确保子Span与父Span采样决策一致,建议结合ParentBasedSampler使用:
import { ParentBasedSampler } from '@opentelemetry/sdk-trace-base';
const sampler = new ParentBasedSampler({
root: new CustomSampler(),
remoteParentSampled: new AlwaysOnSampler(),
remoteParentNotSampled: new AlwaysOffSampler(),
localParentSampled: new AlwaysOnSampler(),
localParentNotSampled: new AlwaysOffSampler()
});
最佳实践建议
- 统一使用单一TracerProvider:避免多Provider带来的复杂性
- 基于Span特征决策:可通过spanName、attributes等识别Span来源
- 保持追踪完整性:确保同一追踪链上的Span采样决策一致
- 考虑性能影响:复杂采样逻辑可能增加开销
总结
OpenTelemetry-js通过灵活的Sampler接口,支持开发者实现精细化的采样策略。相比使用多个TracerProvider的方案,自定义Sampler既能满足差异化采样需求,又能保证追踪数据的完整性,是更优雅的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896