OpenTelemetry-js 中自定义采样器的实现与问题排查
2025-06-27 11:33:52作者:凤尚柏Louis
前言
在使用 OpenTelemetry 进行分布式追踪时,采样是一个重要的优化手段。本文将深入探讨如何在 OpenTelemetry-js 中实现自定义采样器,并解决实际开发中遇到的一个典型问题。
采样器基础概念
采样器决定了哪些追踪数据会被记录和导出。OpenTelemetry 提供了几种内置采样器:
- AlwaysOnSampler:记录所有追踪数据
- AlwaysOffSampler:不记录任何追踪数据
- TraceIdRatioBasedSampler:基于追踪ID的比例采样
自定义采样器实现
在实际项目中,我们经常需要根据特定条件过滤掉不需要的追踪数据。例如,对于某些健康检查端点或特定的HTTP方法,我们可能不希望记录追踪信息。
实现思路
- 继承 TraceIdRatioBasedSampler 基类
- 重写 shouldSample 方法
- 在方法中添加自定义过滤逻辑
关键代码分析
class CustomSampler extends TraceIdRatioBasedSampler {
public readonly excludeHttpMethods = HTTP_METHOD_BLACKLIST;
public readonly excludeHttpRoutes = HTTP_ROUTE_BLACKLIST;
shouldSample(
context: Context,
traceId: string,
_spanName: string,
_spanKind: SpanKind,
attributes: Attributes,
_links: Array<Link>
): SamplingResult {
// 先执行父类的采样逻辑
const radioSampleDecision = super.shouldSample(context, traceId);
// 如果父类决定不记录,直接返回
if (radioSampleDecision.decision === SamplingDecision.NOT_RECORD) {
return radioSampleDecision;
}
// 获取HTTP方法和路由属性
const httpMethod = attributes['http.method'] ?? attributes[ATTR_HTTP_REQUEST_METHOD];
const httpRoute = attributes['http.route'] ?? attributes[ATTR_HTTP_ROUTE];
// 标准化属性值
const normalizedHttpMethod = httpMethod?.toString().toUpperCase() ?? 'GET';
const normalizedHttpRoute = httpRoute?.toString().toLowerCase() ?? '/';
// 检查是否在黑名单中
if (this.excludeHttpMethods.includes(normalizedHttpMethod) {
return {
...radioSampleDecision,
decision: SamplingDecision.NOT_RECORD,
};
}
if (this.excludeHttpRoutes.includes(normalizedHttpRoute)) {
return {
...radioSampleDecision,
decision: SamplingDecision.NOT_RECORD,
};
}
return radioSampleDecision;
}
}
常见问题与解决方案
问题现象
虽然采样器返回了 NOT_RECORD 决策,但追踪数据仍然被发送到了收集器。
原因分析
- 属性名称不一致:OpenTelemetry 中HTTP属性的命名可能有多个变体
- 采样时机问题:采样器可能在Span创建后被调用
- 配置问题:采样器可能没有正确注册到TracerProvider
解决方案
- 统一属性名称检查:确保检查所有可能的属性名称变体
- 验证采样器注册:确认采样器已正确配置
- 调试输出:添加日志输出验证采样决策
最佳实践
- 全面检查属性:考虑所有可能的属性名称变体
- 单元测试:为采样器编写单元测试验证各种场景
- 性能考虑:避免在采样器中执行复杂计算
- 配置灵活性:考虑将过滤规则外部化,便于动态调整
总结
实现自定义采样器是OpenTelemetry使用中的重要技能。通过继承内置采样器并重写关键方法,我们可以灵活控制哪些追踪数据需要记录。遇到问题时,应从属性名称、配置正确性和执行时机等多个角度进行排查。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868