UMI-tools 使用教程
1. 项目介绍
UMI-tools 是一个用于处理 Unique Molecular Identifiers (UMIs) 和单细胞 RNA-Seq 细胞条码的工具集。UMIs 是随机分子标签,用于在 NGS 数据中识别和去除 PCR 重复。UMI-tools 提供了多种命令来处理包含 UMIs 的 fastq 文件,并在映射后进行去重和计数。
主要功能包括:
extract: 从 fastq 读取中提取 UMIs 并将其附加到读取名称。whitelist: 构建真实细胞条码的白名单,适用于单细胞 RNA-Seq。dedup: 基于 UMIs 进行 PCR 重复的去重。group: 标记 PCR 重复但不删除,适用于需要手动检查重复的情况。count: 对每个基因的唯一分子进行计数,适用于单细胞 RNA-Seq。
2. 项目快速启动
安装 UMI-tools
使用 Conda 安装:
conda install -c bioconda -c conda-forge umi_tools
或者使用 pip 安装:
pip install umi_tools
下载测试数据
下载示例数据:
wget https://github.com/CGATOxford/UMI-tools/releases/download/v0.2.3/example.fastq.gz
提取 UMIs
使用 umi_tools extract 命令提取 UMIs:
umi_tools extract --stdin=example.fastq.gz --bc-pattern=NNNNNNNNN --log=processed.log --stdout processed.fastq.gz
映射读取
使用 Bowtie 进行读取映射:
bowtie --threads 4 -v 2 -m 10 -a mm9 <( gunzip < processed.fastq.gz ) --sam > mapped.sam
将 SAM 文件转换为 BAM 文件:
samtools import mm9.fa mapped.sam mapped.bam
对 BAM 文件进行排序和索引:
samtools sort mapped.bam -o example.bam
samtools index example.bam
去重
使用 umi_tools dedup 进行去重:
umi_tools dedup -I example.bam --output-stats=deduplicated -S deduplicated.bam
3. 应用案例和最佳实践
单细胞 RNA-Seq 数据处理
在单细胞 RNA-Seq 数据处理中,UMI-tools 可以用于去除 PCR 重复,确保数据的准确性。通过 count 命令,可以生成每个基因的唯一分子计数矩阵,用于下游分析。
基因表达定量
在基因表达定量中,UMI-tools 可以帮助去除由于 PCR 扩增引入的重复,从而提高定量的准确性。dedup 命令可以应用于映射后的 BAM 文件,去除重复读取。
4. 典型生态项目
alevin
alevin 是一个用于单细胞 RNA-Seq 数据处理的工具,与 UMI-tools 类似,它也支持 UMIs 的处理。alevin 提供了从 fastq 到计数矩阵的端到端解决方案,并且支持多重映射读取的量化。
STAR
STAR 是一个高效的 RNA-Seq 读取映射工具,可以与 UMI-tools 结合使用。在映射读取之前,可以使用 UMI-tools 提取 UMIs,然后使用 STAR 进行映射。
samtools
samtools 是一个用于处理 SAM/BAM 文件的工具集,与 UMI-tools 结合使用,可以完成从读取映射到去重的完整流程。samtools 提供了对 BAM 文件的排序、索引和查看等功能。
通过这些工具的结合使用,可以构建一个高效、准确的 NGS 数据处理流程。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00