GPT-SoVITS项目ONNX模型导出与推理实践指南
2025-05-01 03:33:10作者:咎岭娴Homer
模型导出流程解析
GPT-SoVITS项目提供了将训练好的语音合成模型导出为ONNX格式的功能,主要包括以下几个关键步骤:
-
模型导出准备:首先需要确保已经训练好GPT-SoVITS模型,并准备好相关的配置文件。项目中的
onnx_export.py脚本是主要的导出工具,执行后会生成五个关键文件:- t2s_encoder.onnx
- fsdec.onnx
- t2s_sdec.onnx
- vits.onnx
- config.json
-
辅助模型导出:除了主模型外,还需要导出两个辅助模型:
- BERT模型:用于文本特征提取,中文模型使用chinese-roberta-wwm-ext-large
- SSL模型:用于音频特征提取,中文模型使用chinese-hubert-base
-
导出注意事项:
- 需要取消
onnx_export.py中的注释才能正常导出 - 导出过程中可能会遇到一些UserWarning,但不影响最终结果
- 建议检查导出后的模型文件大小是否符合预期
- 需要取消
ONNX模型推理实现
导出的ONNX模型可以通过ONNX Runtime进行推理,以下是关键实现要点:
- 初始化推理会话:
import onnxruntime
bert = onnxruntime.InferenceSession("chinese-roberta-wwm-ext-large.onnx")
ssl = onnxruntime.InferenceSession("chinese-hubert-base.onnx")
vits = onnxruntime.InferenceSession("vits.onnx")
- 文本特征处理:
- 使用BERT模型获取文本特征
- 需要处理文本到音素的转换
- 中文和英文的处理方式不同,英文BERT特征可以置零
- 音频特征提取:
ref_audio_16k = torchaudio.functional.resample(ref_audio, 48000, 16000)
ssl_content = ssl.run(None, {'input': ref_audio_16k.numpy()})[0]
- 完整的TTS流程:
- 通过encoder生成初始特征
- 使用first stage decoder进行初步解码
- 通过stage decoder进行迭代解码,直到遇到EOS标记
- 最后使用VITS模型合成最终音频
性能优化实践
针对实际应用中的性能需求,可以考虑以下优化方案:
- 模型量化:
- 将FP32模型量化为INT8,可以显著减少模型大小和提高推理速度
- 需要注意量化后的精度损失,建议进行量化感知训练
- 模型剪枝:
- 使用ONNX Surgeon等工具对模型进行剪枝
- 移除不重要的神经元或层,减少计算量
- 推理加速:
- 使用TensorRT进一步优化ONNX模型
- 针对不同硬件平台进行特定优化
- 多线程处理:
- 利用ONNX Runtime的多线程支持
- 批量处理可以进一步提高吞吐量
跨平台部署方案
GPT-SoVITS的ONNX模型可以支持多种部署场景:
- Python环境:
- 直接使用ONNX Runtime Python API
- 适合服务器端部署
- C++环境:
- 使用ONNX Runtime C++ API
- 适合嵌入式或高性能场景
- Unity游戏引擎:
- 通过ONNX Runtime的C#绑定
- 实现游戏内的实时语音合成
- 移动端部署:
- 转换为平台特定格式(如CoreML、NNAPI)
- 需要考虑模型大小和计算资源限制
常见问题解决
在实际使用中可能会遇到以下问题及解决方案:
- 形状不匹配错误:
- 检查各环节的输入输出形状
- 确保BERT特征、SSL特征的维度一致
- 推理速度慢:
- 启用ONNX Runtime的GPU加速
- 优化迭代解码的停止条件
- 音色不一致:
- 检查参考音频的质量和长度
- 确保SSL特征提取正确
- 多语言支持:
- 针对不同语言使用对应的BERT模型
- 调整文本预处理流程
通过以上实践,可以有效地将GPT-SoVITS模型部署到各种生产环境中,实现高质量的语音合成服务。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660