GPT-SoVITS项目ONNX模型导出与推理实践指南
2025-05-01 01:39:59作者:咎岭娴Homer
模型导出流程解析
GPT-SoVITS项目提供了将训练好的语音合成模型导出为ONNX格式的功能,主要包括以下几个关键步骤:
-
模型导出准备:首先需要确保已经训练好GPT-SoVITS模型,并准备好相关的配置文件。项目中的
onnx_export.py
脚本是主要的导出工具,执行后会生成五个关键文件:- t2s_encoder.onnx
- fsdec.onnx
- t2s_sdec.onnx
- vits.onnx
- config.json
-
辅助模型导出:除了主模型外,还需要导出两个辅助模型:
- BERT模型:用于文本特征提取,中文模型使用chinese-roberta-wwm-ext-large
- SSL模型:用于音频特征提取,中文模型使用chinese-hubert-base
-
导出注意事项:
- 需要取消
onnx_export.py
中的注释才能正常导出 - 导出过程中可能会遇到一些UserWarning,但不影响最终结果
- 建议检查导出后的模型文件大小是否符合预期
- 需要取消
ONNX模型推理实现
导出的ONNX模型可以通过ONNX Runtime进行推理,以下是关键实现要点:
- 初始化推理会话:
import onnxruntime
bert = onnxruntime.InferenceSession("chinese-roberta-wwm-ext-large.onnx")
ssl = onnxruntime.InferenceSession("chinese-hubert-base.onnx")
vits = onnxruntime.InferenceSession("vits.onnx")
- 文本特征处理:
- 使用BERT模型获取文本特征
- 需要处理文本到音素的转换
- 中文和英文的处理方式不同,英文BERT特征可以置零
- 音频特征提取:
ref_audio_16k = torchaudio.functional.resample(ref_audio, 48000, 16000)
ssl_content = ssl.run(None, {'input': ref_audio_16k.numpy()})[0]
- 完整的TTS流程:
- 通过encoder生成初始特征
- 使用first stage decoder进行初步解码
- 通过stage decoder进行迭代解码,直到遇到EOS标记
- 最后使用VITS模型合成最终音频
性能优化实践
针对实际应用中的性能需求,可以考虑以下优化方案:
- 模型量化:
- 将FP32模型量化为INT8,可以显著减少模型大小和提高推理速度
- 需要注意量化后的精度损失,建议进行量化感知训练
- 模型剪枝:
- 使用ONNX Surgeon等工具对模型进行剪枝
- 移除不重要的神经元或层,减少计算量
- 推理加速:
- 使用TensorRT进一步优化ONNX模型
- 针对不同硬件平台进行特定优化
- 多线程处理:
- 利用ONNX Runtime的多线程支持
- 批量处理可以进一步提高吞吐量
跨平台部署方案
GPT-SoVITS的ONNX模型可以支持多种部署场景:
- Python环境:
- 直接使用ONNX Runtime Python API
- 适合服务器端部署
- C++环境:
- 使用ONNX Runtime C++ API
- 适合嵌入式或高性能场景
- Unity游戏引擎:
- 通过ONNX Runtime的C#绑定
- 实现游戏内的实时语音合成
- 移动端部署:
- 转换为平台特定格式(如CoreML、NNAPI)
- 需要考虑模型大小和计算资源限制
常见问题解决
在实际使用中可能会遇到以下问题及解决方案:
- 形状不匹配错误:
- 检查各环节的输入输出形状
- 确保BERT特征、SSL特征的维度一致
- 推理速度慢:
- 启用ONNX Runtime的GPU加速
- 优化迭代解码的停止条件
- 音色不一致:
- 检查参考音频的质量和长度
- 确保SSL特征提取正确
- 多语言支持:
- 针对不同语言使用对应的BERT模型
- 调整文本预处理流程
通过以上实践,可以有效地将GPT-SoVITS模型部署到各种生产环境中,实现高质量的语音合成服务。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3