GPT-SoVITS项目ONNX模型导出与推理实践指南
2025-05-01 14:25:09作者:咎岭娴Homer
模型导出流程解析
GPT-SoVITS项目提供了将训练好的语音合成模型导出为ONNX格式的功能,主要包括以下几个关键步骤:
-
模型导出准备:首先需要确保已经训练好GPT-SoVITS模型,并准备好相关的配置文件。项目中的
onnx_export.py
脚本是主要的导出工具,执行后会生成五个关键文件:- t2s_encoder.onnx
- fsdec.onnx
- t2s_sdec.onnx
- vits.onnx
- config.json
-
辅助模型导出:除了主模型外,还需要导出两个辅助模型:
- BERT模型:用于文本特征提取,中文模型使用chinese-roberta-wwm-ext-large
- SSL模型:用于音频特征提取,中文模型使用chinese-hubert-base
-
导出注意事项:
- 需要取消
onnx_export.py
中的注释才能正常导出 - 导出过程中可能会遇到一些UserWarning,但不影响最终结果
- 建议检查导出后的模型文件大小是否符合预期
- 需要取消
ONNX模型推理实现
导出的ONNX模型可以通过ONNX Runtime进行推理,以下是关键实现要点:
- 初始化推理会话:
import onnxruntime
bert = onnxruntime.InferenceSession("chinese-roberta-wwm-ext-large.onnx")
ssl = onnxruntime.InferenceSession("chinese-hubert-base.onnx")
vits = onnxruntime.InferenceSession("vits.onnx")
- 文本特征处理:
- 使用BERT模型获取文本特征
- 需要处理文本到音素的转换
- 中文和英文的处理方式不同,英文BERT特征可以置零
- 音频特征提取:
ref_audio_16k = torchaudio.functional.resample(ref_audio, 48000, 16000)
ssl_content = ssl.run(None, {'input': ref_audio_16k.numpy()})[0]
- 完整的TTS流程:
- 通过encoder生成初始特征
- 使用first stage decoder进行初步解码
- 通过stage decoder进行迭代解码,直到遇到EOS标记
- 最后使用VITS模型合成最终音频
性能优化实践
针对实际应用中的性能需求,可以考虑以下优化方案:
- 模型量化:
- 将FP32模型量化为INT8,可以显著减少模型大小和提高推理速度
- 需要注意量化后的精度损失,建议进行量化感知训练
- 模型剪枝:
- 使用ONNX Surgeon等工具对模型进行剪枝
- 移除不重要的神经元或层,减少计算量
- 推理加速:
- 使用TensorRT进一步优化ONNX模型
- 针对不同硬件平台进行特定优化
- 多线程处理:
- 利用ONNX Runtime的多线程支持
- 批量处理可以进一步提高吞吐量
跨平台部署方案
GPT-SoVITS的ONNX模型可以支持多种部署场景:
- Python环境:
- 直接使用ONNX Runtime Python API
- 适合服务器端部署
- C++环境:
- 使用ONNX Runtime C++ API
- 适合嵌入式或高性能场景
- Unity游戏引擎:
- 通过ONNX Runtime的C#绑定
- 实现游戏内的实时语音合成
- 移动端部署:
- 转换为平台特定格式(如CoreML、NNAPI)
- 需要考虑模型大小和计算资源限制
常见问题解决
在实际使用中可能会遇到以下问题及解决方案:
- 形状不匹配错误:
- 检查各环节的输入输出形状
- 确保BERT特征、SSL特征的维度一致
- 推理速度慢:
- 启用ONNX Runtime的GPU加速
- 优化迭代解码的停止条件
- 音色不一致:
- 检查参考音频的质量和长度
- 确保SSL特征提取正确
- 多语言支持:
- 针对不同语言使用对应的BERT模型
- 调整文本预处理流程
通过以上实践,可以有效地将GPT-SoVITS模型部署到各种生产环境中,实现高质量的语音合成服务。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0