MediaCrawler项目中小红书创作者主页数据抓取优化指南
项目背景
MediaCrawler是一个开源的媒体内容爬取工具,专门用于从各大社交平台抓取数据。其中对小红书平台的支持是该项目的重点功能之一。在最新版本中,项目增加了对小红书创作者主页内容的抓取功能,但在实际使用过程中发现了一些需要优化的地方。
核心问题分析
在抓取小红书创作者主页内容(type=creator)时,主要存在两个技术问题:
-
分页限制问题:系统默认只能抓取前30条内容,超过30条后会出现数据重复的情况。即使尝试修改分页参数为60,依然无法突破这个限制。
-
性能瓶颈问题:由于默认会抓取每条内容的评论数据,导致单个创作者主页的抓取时间可能长达20多分钟,严重影响爬取效率。
解决方案
分页限制的优化
经过项目维护者的调试和修复,目前已经解决了30条数据限制的问题。开发者可以通过以下配置来优化抓取体验:
# 在配置文件中设置
CRAWLER_TYPE = "creator" # 指定爬取类型为创作者模式
XHS_CREATOR_ID_LIST = ["62b450a30000000015016cc5"] # 指定要抓取的创作者ID列表
性能优化方案
对于不需要评论数据的用户,项目新增了跳过评论抓取的配置选项。这可以显著提高爬取速度,特别是在处理大量创作者数据时。建议配置如下:
# 在配置文件中添加
SKIP_COMMENTS = True # 跳过评论抓取
使用建议
-
明确需求:在开始抓取前,先确定是否需要评论数据。如果仅需要基础内容,建议启用跳过评论选项。
-
分批处理:对于大量创作者数据的抓取,建议分批进行,避免单次任务过重。
-
参数调优:根据实际网络环境和目标数据量,适当调整并发数和超时参数。
技术实现原理
MediaCrawler在处理小红书创作者数据时,采用了以下技术方案:
-
API逆向工程:通过分析小红书移动端API,构建了模拟请求的逻辑。
-
分页控制:实现了自动分页机制,确保能获取完整的创作者内容列表。
-
模块化设计:将内容抓取、评论抓取等功能设计为独立模块,方便按需启用。
注意事项
-
请遵守小红书的robots.txt协议,合理控制抓取频率。
-
抓取的数据仅限个人学习研究使用,不得用于商业用途。
-
建议在非高峰时段进行抓取,减少对目标服务器的影响。
通过以上优化,MediaCrawler能够更高效、稳定地抓取小红书创作者主页内容,为用户提供更好的数据采集体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00