FreeEEG32-beta 开源项目使用教程
1. 项目介绍
FreeEEG32-beta 是一个开源的脑电图(EEG)设备项目,旨在通过开源硬件和软件使脑电图技术更加普及和易于访问。该项目基于 STM32H743ZIT6 MCU,支持多种通信接口(如 USB、UART、SPI),并配备了高精度的 AD7771BCPZ 模数转换器。FreeEEG32-beta 不仅提供了硬件设计文件,还包括了固件和软件工具链,方便开发者进行二次开发和定制。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的开发环境已经安装了以下工具:
- Docker
- GCC ARM Embedded Toolchain
- OpenOCD
2.2 克隆项目
首先,克隆 FreeEEG32-beta 项目到本地:
git clone https://github.com/neuroidss/FreeEEG32-beta.git
cd FreeEEG32-beta
2.3 编译固件
进入项目目录后,使用以下命令编译固件:
./gcc-arm-none-eabi_run.sh
2.4 烧录固件
编译完成后,使用以下命令将固件烧录到 FreeEEG32 设备中:
sudo ./openocd_flash.sh
2.5 测试设备
烧录完成后,您可以通过以下命令检查设备是否正常工作:
lsusb
如果设备正常工作,您应该能够看到一个 ST Microelectronics STM32F407 设备。
3. 应用案例和最佳实践
3.1 脑电图数据采集
FreeEEG32-beta 可以用于采集脑电图数据,并将其传输到计算机进行进一步分析。以下是一个简单的 Python 脚本示例,用于读取和显示脑电图数据:
import serial
import matplotlib.pyplot as plt
# 打开串口
ser = serial.Serial('/dev/ttyACM0', 921600)
# 读取数据
data = ser.read(1000)
# 显示数据
plt.plot(data)
plt.show()
3.2 脑电图信号处理
FreeEEG32-beta 采集的数据可以通过各种信号处理算法进行分析。以下是一个使用 SciPy 进行频谱分析的示例:
import numpy as np
from scipy.fft import fft
# 假设 data 是采集到的脑电图数据
N = len(data)
T = 1.0 / 921600.0
xf = np.linspace(0.0, 1.0/(2.0*T), N//2)
# 计算 FFT
yf = fft(data)
# 绘制频谱图
plt.plot(xf, 2.0/N * np.abs(yf[:N//2]))
plt.show()
4. 典型生态项目
4.1 OpenVIBE
OpenVIBE 是一个开源的脑机接口(BCI)平台,可以与 FreeEEG32-beta 结合使用,进行脑电图数据的实时处理和分析。通过 OpenVIBE,用户可以构建复杂的脑机接口应用,如实时反馈系统、脑电图数据可视化等。
4.2 BrainFlow
BrainFlow 是一个开源的脑电图数据处理库,支持多种脑电图设备,包括 FreeEEG32-beta。BrainFlow 提供了丰富的 API,方便开发者进行数据采集、预处理和分析。
4.3 NeuroPype
NeuroPype 是一个商业化的脑电图数据处理平台,支持 FreeEEG32-beta 设备。NeuroPype 提供了强大的信号处理和分析工具,适用于科研和临床应用。
通过这些生态项目,FreeEEG32-beta 可以广泛应用于脑电图研究、脑机接口开发、神经科学研究等领域。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00