Yarn Spinner for Unity 使用教程
1. 项目介绍
Yarn Spinner for Unity 是一个用于创建交互式对话和叙事的开源工具。它允许开发者轻松地在 Unity 游戏中集成复杂的对话系统,支持多分支对话、条件逻辑和本地化等功能。Yarn Spinner 的核心是一个基于文本的脚本语言,开发者可以使用这种语言编写对话脚本,并通过 Unity 的组件和脚本将其集成到游戏中。
2. 项目快速启动
2.1 安装 Yarn Spinner for Unity
-
克隆项目仓库:
git clone https://github.com/YarnSpinnerTool/YarnSpinner-Unity.git -
导入 Unity 项目: 打开 Unity Hub,选择“添加项目”,然后选择克隆的项目文件夹。
-
安装 Yarn Spinner 包: 在 Unity 编辑器中,打开 Package Manager,搜索并安装
Yarn Spinner包。
2.2 创建第一个对话
-
创建 Yarn 脚本: 在 Unity 项目中,右键点击
Assets文件夹,选择Create > Yarn Spinner > Yarn Script,命名为MyFirstDialogue.yarn。 -
编写对话脚本: 打开
MyFirstDialogue.yarn,编写以下对话内容:title: Start --- <<if visited("Start")>> You've been here before! <<else>> Welcome to Yarn Spinner! <<endif>> --- -
创建对话节点: 在 Unity 场景中,创建一个空对象,命名为
DialogueRunner,并添加Yarn Spinner > Dialogue Runner组件。 -
运行对话: 在
DialogueRunner组件中,将MyFirstDialogue.yarn拖入Yarn Scripts列表中,然后点击运行按钮。
3. 应用案例和最佳实践
3.1 应用案例
Yarn Spinner 广泛应用于各种类型的游戏中,尤其是那些需要复杂对话系统的游戏,如角色扮演游戏(RPG)、冒险游戏和互动小说。例如,在一款 RPG 游戏中,开发者可以使用 Yarn Spinner 来创建多分支对话,玩家的选择将影响游戏的剧情走向。
3.2 最佳实践
- 模块化设计:将对话脚本拆分为多个小模块,便于管理和重用。
- 本地化支持:利用 Yarn Spinner 的本地化功能,轻松实现多语言支持。
- 测试驱动开发:在编写对话脚本时,使用测试工具确保对话逻辑的正确性。
4. 典型生态项目
4.1 Yarn Spinner 社区
Yarn Spinner 拥有一个活跃的社区,开发者可以在社区中分享经验、提问和贡献代码。社区资源包括:
- GitHub 仓库:YarnSpinnerTool/YarnSpinner-Unity
- 官方论坛:Yarn Spinner 论坛
4.2 相关工具和插件
- Yarn Editor:一个用于编写和测试 Yarn 脚本的独立编辑器。
- Dialogue System for Unity:一个与 Yarn Spinner 兼容的对话系统插件,提供更丰富的对话功能。
通过以上内容,您可以快速上手 Yarn Spinner for Unity,并在实际项目中应用它来创建复杂的对话系统。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00