GraspNet Baseline 项目教程
2026-01-23 05:05:24作者:齐添朝
1. 项目介绍
GraspNet Baseline 是一个基于深度学习的抓取检测模型,专门用于处理大规模的物体抓取任务。该项目是 "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping"(CVPR 2020)论文的基线模型。GraspNet Baseline 提供了完整的训练和测试代码,支持多种相机数据(如RealSense和Kinect),并且可以生成高质量的抓取检测结果。
2. 项目快速启动
2.1 环境准备
首先,确保你的系统满足以下要求:
- Python 3
- PyTorch 1.6
- Open3d >= 0.8
- TensorBoard 2.3
- NumPy
- SciPy
- Pillow
- tqdm
2.2 安装步骤
-
克隆项目代码
git clone https://github.com/graspnet/graspnet-baseline.git cd graspnet-baseline -
安装依赖包
pip install -r requirements.txt -
编译和安装 PointNet2 和 KNN 操作符
cd pointnet2 python setup.py install cd ../knn python setup.py install -
安装 GraspNet API
git clone https://github.com/graspnet/graspnetAPI.git cd graspnetAPI pip install .
2.3 生成 Tolerance 标签
Tolerance 标签需要额外生成。你可以通过以下命令生成:
cd dataset
sh command_generate_tolerance_label.sh
2.4 训练和测试
训练
sh command_train.sh --dataset_root /path/to/dataset --camera realsense --log_dir /path/to/log
测试
sh command_test.sh --dataset_root /path/to/dataset --camera realsense --checkpoint_path /path/to/checkpoint --dump_dir /path/to/dump
2.5 运行 Demo
sh command_demo.sh --checkpoint_path /path/to/checkpoint
3. 应用案例和最佳实践
3.1 应用案例
GraspNet Baseline 可以广泛应用于机器人抓取任务中,特别是在需要处理大规模物体抓取的场景中。例如,在自动化仓储系统中,机器人需要快速准确地抓取各种形状和大小的物品,GraspNet Baseline 可以提供高效的抓取检测解决方案。
3.2 最佳实践
- 数据预处理:确保输入的RGB-D图像和相机内参准确无误。
- 模型选择:根据实际应用场景选择合适的预训练模型(如RealSense或Kinect模型)。
- 参数调优:根据实际需求调整训练和测试参数,如
--collision_thresh等。
4. 典型生态项目
4.1 GraspNet API
GraspNet API 是与 GraspNet Baseline 配套使用的评估工具,提供了完整的评估接口和数据处理功能。
4.2 PointNet2
PointNet2 是用于处理点云数据的深度学习模型,GraspNet Baseline 中使用了 PointNet2 进行点云特征提取。
4.3 Open3D
Open3D 是一个开源的3D数据处理库,GraspNet Baseline 使用 Open3D 进行点云的可视化和处理。
通过以上模块的介绍和实践,你可以快速上手并应用 GraspNet Baseline 项目,实现高效的物体抓取检测。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249