Laravel Blanket 开源项目教程
1. 项目介绍
Laravel Blanket 是一个为 Laravel 应用设计的 HTTP 客户端请求监控工具。它通过包装 Laravel 的 HTTP 客户端请求,提供详细的请求和响应日志记录,并允许用户在控制台中重试请求。Laravel Blanket 旨在帮助开发者快速调试 API 接口问题,优化网络调用,并确保敏感数据不被泄露。
主要功能
- 请求和响应日志:自动记录所有 HTTP 客户端请求和响应的详细信息。
- 敏感数据隐藏:允许指定哪些字段应被视为敏感,避免在日志中显示这些数据。
- 用户界面:提供一个简单易用的 Web 界面,可以查看和管理请求日志。
- 重试请求:直接从控制台重试失败的请求,方便测试和修复问题。
2. 项目快速启动
安装
首先,使用 Composer 安装 Laravel Blanket:
composer require ahmadwaleed/laravel-blanket
安装完成后,发布其资产并运行迁移:
php artisan blanket:wrap
php artisan vendor:publish --provider="Ahmadwaleed\Blanket\BlanketServiceProvider" --tag="blanket-migrations"
php artisan migrate
配置
你可以通过以下命令发布配置文件:
php artisan vendor:publish --provider="Ahmadwaleed\Blanket\BlanketServiceProvider" --tag="blanket-config"
配置文件 config/blanket.php 中包含以下选项:
enabled:是否启用 Laravel Blanket。hide_sensitive_data:指定需要隐藏的敏感数据字段。path:Laravel Blanket 的访问路径。middlewares:分配给 Laravel Blanket 路由的中间件。log_response_limit:日志中响应内容的最大限制。logs_per_page:每页显示的日志数量。prune_logs_duration:日志的自动清理时间。
3. 应用案例和最佳实践
快速调试
当 API 接口出现问题时,你可以立即查看错误的请求和响应信息,无需深入代码。例如,如果你发现某个 API 请求返回了 500 错误,你可以通过 Laravel Blanket 查看详细的请求和响应日志,快速定位问题。
性能监测
通过日志分析,了解请求时间,优化网络调用。例如,你可以通过 Laravel Blanket 记录的响应时间,找出响应时间较长的请求,并对其进行优化。
安全审计
确保敏感数据不被泄露,及时发现潜在的安全风险。例如,你可以在配置文件中指定需要隐藏的敏感字段,如 Authorization 和 password,避免这些数据在日志中显示。
4. 典型生态项目
Laravel Debugbar
Laravel Debugbar 是一个用于调试 Laravel 应用的工具栏,提供了丰富的调试信息。与 Laravel Blanket 结合使用,可以更全面地监控和调试应用。
Sentry
Sentry 是一个错误跟踪平台,可以帮助你实时监控和修复应用中的错误。与 Laravel Blanket 结合使用,可以更快速地定位和修复 API 请求中的错误。
Bugsnag
Bugsnag 是一个应用错误监控工具,可以帮助你实时监控应用中的错误,并提供详细的错误报告。与 Laravel Blanket 结合使用,可以更全面地监控和调试应用中的错误。
通过这些生态项目的结合使用,你可以构建一个更强大、更稳定的 Laravel 应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00