ZED ROS 2 Wrapper 使用指南
1. 项目介绍
ZED ROS 2 Wrapper 是一个用于将 ZED 立体相机与 ROS 2 集成的开源项目。该项目提供了访问 ZED 相机数据的接口,包括左右图像、深度数据、彩色点云、位置跟踪、传感器数据等。通过该 Wrapper,开发者可以轻松地将 ZED 相机集成到 ROS 2 生态系统中,实现各种机器人视觉应用。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统满足以下要求:
- Ubuntu 20.04 (Focal Fossa) 或 Ubuntu 22.04 (Jammy Jellyfish)
- ZED SDK v4.1 或更高版本
- CUDA 依赖
- ROS 2 Foxy Fitzroy 或 ROS 2 Humble Hawksbill
2.2 安装步骤
-
创建工作空间
mkdir -p ~/ros2_ws/src/ cd ~/ros2_ws/src/ -
克隆项目
git clone --recursive https://github.com/stereolabs/zed-ros2-wrapper.git -
安装依赖
cd ~/ros2_ws/ sudo apt update rosdep update rosdep install --from-paths src --ignore-src -r -y -
编译项目
colcon build --symlink-install --cmake-args=-DCMAKE_BUILD_TYPE=Release --parallel-workers $(nproc) -
设置环境变量
echo "source $(pwd)/install/local_setup.bash" >> ~/.bashrc source ~/.bashrc
2.3 启动 ZED 节点
使用以下命令启动 ZED 节点:
ros2 launch zed_wrapper zed_camera.launch.py camera_model:=<camera_model>
将 <camera_model> 替换为您使用的相机型号,例如 zed、zedm、zed2 等。
3. 应用案例和最佳实践
3.1 机器人导航
ZED ROS 2 Wrapper 可以与 ROS 2 的导航堆栈集成,提供精确的定位和地图构建功能。通过融合 ZED 相机的深度数据和位置跟踪信息,机器人可以在复杂环境中实现自主导航。
3.2 物体检测与跟踪
利用 ZED 相机的高精度深度数据和内置的物体检测模块,开发者可以实现实时的物体检测与跟踪。这对于无人驾驶、机器人抓取等应用场景非常有用。
3.3 增强现实
ZED 相机可以与 AR 应用结合,提供精确的姿态估计和环境感知。通过将虚拟对象叠加到现实世界中,开发者可以创建沉浸式的增强现实体验。
4. 典型生态项目
4.1 ROS 2 Navigation Stack
ROS 2 的导航堆栈是一个广泛使用的机器人导航框架,ZED ROS 2 Wrapper 可以无缝集成到该框架中,提供高精度的定位和地图构建功能。
4.2 MoveIt 2
MoveIt 2 是 ROS 2 中的运动规划框架,ZED 相机可以用于实时感知环境,帮助机器人规划安全的运动路径。
4.3 RViz 2
RViz 2 是 ROS 2 中的可视化工具,ZED ROS 2 Wrapper 提供了丰富的数据可视化功能,开发者可以在 RViz 中实时查看相机数据和处理结果。
通过以上步骤,您可以快速上手 ZED ROS 2 Wrapper,并将其应用于各种机器人视觉项目中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00