开源项目教程:chainer-partial_convolution_image_inpainting
2024-08-18 04:30:40作者:舒璇辛Bertina
项目介绍
chainer-partial_convolution_image_inpainting 是一个基于 Chainer 框架的开源项目,旨在实现图像修复(Image Inpainting)。该项目是 NVIDIA 论文 "Image Inpainting for Irregular Holes Using Partial Convolutions" 的复现。通过使用部分卷积(Partial Convolutions),该项目能够有效地填充图像中的不规则孔洞,生成高质量的修复图像。
项目快速启动
环境准备
确保你的环境中安装了以下依赖:
- Python 3.5 或更高版本
- Chainer 4.0alpha 或更高版本
- OpenCV
克隆项目
首先,克隆项目到本地:
git clone https://github.com/SeitaroShinagawa/chainer-partial_convolution_image_inpainting.git
cd chainer-partial_convolution_image_inpainting
安装依赖
安装所需的 Python 包:
pip install -r requirements.txt
运行示例
以下是一个简单的示例代码,展示如何使用该项目进行图像修复:
import argparse
import os
import chainer
from chainer import training
from chainer import cuda, serializers
from chainer.training import extension
from chainer.training import extensions
import sys
import common.net as net
import datasets
from updater import *
from evaluation import *
# 参数设置
parser = argparse.ArgumentParser(description='Completion Network')
parser.add_argument('--batch_size', '-b', type=int, default=8)
parser.add_argument('--gpu', '-g', type=int, default=0, help='GPU ID (negative value indicates CPU)')
parser.add_argument('--eval_folder', '-e', default='generated_results', help='Directory to output the evaluation result')
parser.add_argument("--load_model", help='completion model path')
parser.add_argument("--resize_to", type=int, default=256, help='resize the image to')
parser.add_argument("--crop_to", type=int, default=256, help='crop the resized image to')
parser.add_argument("--load_dataset", default='place2_test', help='load dataset')
args = parser.parse_args()
# 加载模型
model = getattr(net, "PartialConvCompletion")(ch0=3, input_size=args.crop_to)
if args.load_model != '':
serializers.load_npz(args.load_model, model)
print("Completion model loaded")
# 选择 GPU
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
print("use gpu {}".format(args.gpu))
# 加载数据集
val_dataset = getattr(datasets, args.load_dataset)(paths='val_place2', mask_path="mask/256", resize_to=args.resize_to, crop_to=args.crop_to)
val_iter = chainer.iterators.SerialIterator(val_dataset, args.batch_size)
# 评估
evaluator = extensions.Evaluator(val_iter, model, device=args.gpu)
results = evaluator()
print(results)
应用案例和最佳实践
应用案例
- 艺术修复:修复古老艺术作品中的损坏部分,恢复其原始风貌。
- 照片编辑:移除照片中的不需要的物体或人物,生成自然无痕的背景。
- 视频修复:修复视频中的损坏帧,提高视频质量。
最佳实践
- 数据集准备:确保使用高质量的图像数据集进行训练,以获得更好的修复效果。
- 模型调优:根据具体应用场景调整模型参数,如卷积层数、学习率等。
- 多尺度训练:使用多尺度训练策略,提高模型对不同大小孔洞的修复能力。
典型生态项目
- Chainer:该项目的基础框架,提供了深度学习的基本功能和工具。
- OpenCV:用于图像处理和预处理,提高图像修复的效率和质量。 3
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化Formily DevTools:让表单开发调试效率提升10倍的神器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
Ascend Extension for PyTorch
Python
336
401
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
React Native鸿蒙化仓库
JavaScript
302
353
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
750
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246