开源项目教程:chainer-partial_convolution_image_inpainting
2024-08-18 10:21:56作者:舒璇辛Bertina
项目介绍
chainer-partial_convolution_image_inpainting 是一个基于 Chainer 框架的开源项目,旨在实现图像修复(Image Inpainting)。该项目是 NVIDIA 论文 "Image Inpainting for Irregular Holes Using Partial Convolutions" 的复现。通过使用部分卷积(Partial Convolutions),该项目能够有效地填充图像中的不规则孔洞,生成高质量的修复图像。
项目快速启动
环境准备
确保你的环境中安装了以下依赖:
- Python 3.5 或更高版本
- Chainer 4.0alpha 或更高版本
- OpenCV
克隆项目
首先,克隆项目到本地:
git clone https://github.com/SeitaroShinagawa/chainer-partial_convolution_image_inpainting.git
cd chainer-partial_convolution_image_inpainting
安装依赖
安装所需的 Python 包:
pip install -r requirements.txt
运行示例
以下是一个简单的示例代码,展示如何使用该项目进行图像修复:
import argparse
import os
import chainer
from chainer import training
from chainer import cuda, serializers
from chainer.training import extension
from chainer.training import extensions
import sys
import common.net as net
import datasets
from updater import *
from evaluation import *
# 参数设置
parser = argparse.ArgumentParser(description='Completion Network')
parser.add_argument('--batch_size', '-b', type=int, default=8)
parser.add_argument('--gpu', '-g', type=int, default=0, help='GPU ID (negative value indicates CPU)')
parser.add_argument('--eval_folder', '-e', default='generated_results', help='Directory to output the evaluation result')
parser.add_argument("--load_model", help='completion model path')
parser.add_argument("--resize_to", type=int, default=256, help='resize the image to')
parser.add_argument("--crop_to", type=int, default=256, help='crop the resized image to')
parser.add_argument("--load_dataset", default='place2_test', help='load dataset')
args = parser.parse_args()
# 加载模型
model = getattr(net, "PartialConvCompletion")(ch0=3, input_size=args.crop_to)
if args.load_model != '':
serializers.load_npz(args.load_model, model)
print("Completion model loaded")
# 选择 GPU
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
print("use gpu {}".format(args.gpu))
# 加载数据集
val_dataset = getattr(datasets, args.load_dataset)(paths='val_place2', mask_path="mask/256", resize_to=args.resize_to, crop_to=args.crop_to)
val_iter = chainer.iterators.SerialIterator(val_dataset, args.batch_size)
# 评估
evaluator = extensions.Evaluator(val_iter, model, device=args.gpu)
results = evaluator()
print(results)
应用案例和最佳实践
应用案例
- 艺术修复:修复古老艺术作品中的损坏部分,恢复其原始风貌。
- 照片编辑:移除照片中的不需要的物体或人物,生成自然无痕的背景。
- 视频修复:修复视频中的损坏帧,提高视频质量。
最佳实践
- 数据集准备:确保使用高质量的图像数据集进行训练,以获得更好的修复效果。
- 模型调优:根据具体应用场景调整模型参数,如卷积层数、学习率等。
- 多尺度训练:使用多尺度训练策略,提高模型对不同大小孔洞的修复能力。
典型生态项目
- Chainer:该项目的基础框架,提供了深度学习的基本功能和工具。
- OpenCV:用于图像处理和预处理,提高图像修复的效率和质量。 3
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660