在PandasAI项目中为LocalLLM添加对话记忆功能
2025-05-11 00:10:39作者:温艾琴Wonderful
背景介绍
PandasAI是一个将大型语言模型(LLM)与Pandas数据框架集成的开源项目,它允许用户通过自然语言与数据进行交互。在实际应用中,保持对话上下文对于实现连贯的多轮交互至关重要。本文将详细介绍如何在PandasAI项目中为LocalLLM实现对话记忆功能。
记忆功能实现原理
在PandasAI的核心代码中,LocalLLM类通过context.memory属性来维护对话历史。这个记忆系统的工作原理是:
- 对话记忆以消息列表的形式存储
- 每次对话交互都会将用户输入和模型响应添加到记忆中
- 后续请求会将记忆内容转换为OpenAI兼容的消息格式
- 这些历史消息作为上下文随新请求一起发送给模型
具体实现方法
要为LocalLLM添加记忆功能,需要按照以下步骤操作:
- 首先导入必要的Memory类
- 创建Memory实例来存储对话历史
- 将记忆对象附加到LocalLLM实例
- 在对话过程中自动维护记忆
以下是典型的使用示例:
from pandasai import SmartDataframe
from pandasai.llm.local_llm import LocalLLM
from pandasai.helpers.memory import Memory
# 初始化LocalLLM
llm = LocalLLM(api_base="http://localhost:8000/v1/", model='custom-qwen')
# 创建记忆实例
memory = Memory()
# 添加历史对话
memory.add("查询华为设备数量", True) # 用户消息
memory.add("找到25台华为设备", False) # 模型响应
# 将记忆附加到LLM
llm.memory = memory
# 创建SmartDataframe实例
df = SmartDataframe("设备清单.xlsx", config={
"llm": llm,
"save_charts": True,
"save_charts_path": "./output"
})
# 进行有上下文的对话
response = df.chat("那华三的设备有多少?", output_type="number")
print(response)
技术细节解析
记忆功能的实现依赖于几个关键技术点:
-
消息格式转换:Memory类提供了to_openai_messages()方法,将存储的对话转换为模型可理解的格式
-
上下文维护:每次对话都会自动更新记忆,确保后续请求能获取完整上下文
-
记忆持久化:虽然示例中是临时记忆,但可以扩展实现持久化存储,支持长期对话历史
应用场景与优势
这种记忆机制特别适合以下场景:
- 多轮数据分析:用户可以基于前序查询结果进行深入分析
- 上下文相关查询:如比较不同品牌设备数量等需要记忆前文的场景
- 复杂问题分解:将复杂问题分解为多个简单问题,通过记忆保持连贯性
相比无记忆的交互方式,这种实现提供了更自然、更智能的对话体验,使数据分析过程更加流畅。
扩展与优化建议
对于进阶使用,可以考虑以下优化方向:
- 记忆容量控制:实现滑动窗口或摘要机制,避免过长上下文
- 记忆持久化:将对话历史保存到数据库,支持跨会话记忆
- 记忆权重调整:为不同历史消息分配不同重要性权重
- 记忆分类:区分事实性记忆和指令性记忆,提升上下文相关性
通过这些优化,可以进一步提升PandasAI在复杂数据分析场景中的表现。
总结
PandasAI的记忆功能为数据分析对话系统提供了重要的上下文保持能力。通过合理利用LocalLLM的记忆机制,开发者可以构建出更加智能、更加人性化的数据交互应用。本文介绍的方法不仅适用于基础使用,也为进一步扩展功能提供了基础框架。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328