在PandasAI项目中为LocalLLM添加对话记忆功能
2025-05-11 22:18:42作者:温艾琴Wonderful
背景介绍
PandasAI是一个将大型语言模型(LLM)与Pandas数据框架集成的开源项目,它允许用户通过自然语言与数据进行交互。在实际应用中,保持对话上下文对于实现连贯的多轮交互至关重要。本文将详细介绍如何在PandasAI项目中为LocalLLM实现对话记忆功能。
记忆功能实现原理
在PandasAI的核心代码中,LocalLLM类通过context.memory属性来维护对话历史。这个记忆系统的工作原理是:
- 对话记忆以消息列表的形式存储
- 每次对话交互都会将用户输入和模型响应添加到记忆中
- 后续请求会将记忆内容转换为OpenAI兼容的消息格式
- 这些历史消息作为上下文随新请求一起发送给模型
具体实现方法
要为LocalLLM添加记忆功能,需要按照以下步骤操作:
- 首先导入必要的Memory类
- 创建Memory实例来存储对话历史
- 将记忆对象附加到LocalLLM实例
- 在对话过程中自动维护记忆
以下是典型的使用示例:
from pandasai import SmartDataframe
from pandasai.llm.local_llm import LocalLLM
from pandasai.helpers.memory import Memory
# 初始化LocalLLM
llm = LocalLLM(api_base="http://localhost:8000/v1/", model='custom-qwen')
# 创建记忆实例
memory = Memory()
# 添加历史对话
memory.add("查询华为设备数量", True) # 用户消息
memory.add("找到25台华为设备", False) # 模型响应
# 将记忆附加到LLM
llm.memory = memory
# 创建SmartDataframe实例
df = SmartDataframe("设备清单.xlsx", config={
"llm": llm,
"save_charts": True,
"save_charts_path": "./output"
})
# 进行有上下文的对话
response = df.chat("那华三的设备有多少?", output_type="number")
print(response)
技术细节解析
记忆功能的实现依赖于几个关键技术点:
-
消息格式转换:Memory类提供了to_openai_messages()方法,将存储的对话转换为模型可理解的格式
-
上下文维护:每次对话都会自动更新记忆,确保后续请求能获取完整上下文
-
记忆持久化:虽然示例中是临时记忆,但可以扩展实现持久化存储,支持长期对话历史
应用场景与优势
这种记忆机制特别适合以下场景:
- 多轮数据分析:用户可以基于前序查询结果进行深入分析
- 上下文相关查询:如比较不同品牌设备数量等需要记忆前文的场景
- 复杂问题分解:将复杂问题分解为多个简单问题,通过记忆保持连贯性
相比无记忆的交互方式,这种实现提供了更自然、更智能的对话体验,使数据分析过程更加流畅。
扩展与优化建议
对于进阶使用,可以考虑以下优化方向:
- 记忆容量控制:实现滑动窗口或摘要机制,避免过长上下文
- 记忆持久化:将对话历史保存到数据库,支持跨会话记忆
- 记忆权重调整:为不同历史消息分配不同重要性权重
- 记忆分类:区分事实性记忆和指令性记忆,提升上下文相关性
通过这些优化,可以进一步提升PandasAI在复杂数据分析场景中的表现。
总结
PandasAI的记忆功能为数据分析对话系统提供了重要的上下文保持能力。通过合理利用LocalLLM的记忆机制,开发者可以构建出更加智能、更加人性化的数据交互应用。本文介绍的方法不仅适用于基础使用,也为进一步扩展功能提供了基础框架。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K