在PandasAI项目中为LocalLLM添加对话记忆功能
2025-05-11 16:10:38作者:温艾琴Wonderful
背景介绍
PandasAI是一个将大型语言模型(LLM)与Pandas数据框架集成的开源项目,它允许用户通过自然语言与数据进行交互。在实际应用中,保持对话上下文对于实现连贯的多轮交互至关重要。本文将详细介绍如何在PandasAI项目中为LocalLLM实现对话记忆功能。
记忆功能实现原理
在PandasAI的核心代码中,LocalLLM类通过context.memory属性来维护对话历史。这个记忆系统的工作原理是:
- 对话记忆以消息列表的形式存储
- 每次对话交互都会将用户输入和模型响应添加到记忆中
- 后续请求会将记忆内容转换为OpenAI兼容的消息格式
- 这些历史消息作为上下文随新请求一起发送给模型
具体实现方法
要为LocalLLM添加记忆功能,需要按照以下步骤操作:
- 首先导入必要的Memory类
- 创建Memory实例来存储对话历史
- 将记忆对象附加到LocalLLM实例
- 在对话过程中自动维护记忆
以下是典型的使用示例:
from pandasai import SmartDataframe
from pandasai.llm.local_llm import LocalLLM
from pandasai.helpers.memory import Memory
# 初始化LocalLLM
llm = LocalLLM(api_base="http://localhost:8000/v1/", model='custom-qwen')
# 创建记忆实例
memory = Memory()
# 添加历史对话
memory.add("查询华为设备数量", True) # 用户消息
memory.add("找到25台华为设备", False) # 模型响应
# 将记忆附加到LLM
llm.memory = memory
# 创建SmartDataframe实例
df = SmartDataframe("设备清单.xlsx", config={
"llm": llm,
"save_charts": True,
"save_charts_path": "./output"
})
# 进行有上下文的对话
response = df.chat("那华三的设备有多少?", output_type="number")
print(response)
技术细节解析
记忆功能的实现依赖于几个关键技术点:
-
消息格式转换:Memory类提供了to_openai_messages()方法,将存储的对话转换为模型可理解的格式
-
上下文维护:每次对话都会自动更新记忆,确保后续请求能获取完整上下文
-
记忆持久化:虽然示例中是临时记忆,但可以扩展实现持久化存储,支持长期对话历史
应用场景与优势
这种记忆机制特别适合以下场景:
- 多轮数据分析:用户可以基于前序查询结果进行深入分析
- 上下文相关查询:如比较不同品牌设备数量等需要记忆前文的场景
- 复杂问题分解:将复杂问题分解为多个简单问题,通过记忆保持连贯性
相比无记忆的交互方式,这种实现提供了更自然、更智能的对话体验,使数据分析过程更加流畅。
扩展与优化建议
对于进阶使用,可以考虑以下优化方向:
- 记忆容量控制:实现滑动窗口或摘要机制,避免过长上下文
- 记忆持久化:将对话历史保存到数据库,支持跨会话记忆
- 记忆权重调整:为不同历史消息分配不同重要性权重
- 记忆分类:区分事实性记忆和指令性记忆,提升上下文相关性
通过这些优化,可以进一步提升PandasAI在复杂数据分析场景中的表现。
总结
PandasAI的记忆功能为数据分析对话系统提供了重要的上下文保持能力。通过合理利用LocalLLM的记忆机制,开发者可以构建出更加智能、更加人性化的数据交互应用。本文介绍的方法不仅适用于基础使用,也为进一步扩展功能提供了基础框架。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218