HTSeq技术详解:高通量测序数据分析Python工具指南
2025-06-02 00:19:02作者:姚月梅Lane
概述
HTSeq是一个强大的Python工具包,专门为高通量测序(HTS)数据分析而设计。它提供了一系列功能模块,帮助研究人员处理和分析RNA-Seq、ChIP-Seq等测序数据。本文将深入介绍HTSeq的核心功能和使用方法。
数据读取与质量分析
FASTQ文件读取
HTSeq可以轻松读取FASTQ格式的测序数据文件:
import HTSeq
fastq_file = HTSeq.FastqReader("yeast_RNASeq_excerpt_sequence.txt", "solexa")
这里需要注意质量值的编码格式:
- "phred":默认格式(Phred+33)
- "solexa":旧版Solexa/Illumina格式(1.8版本前使用)
- "solexa_old":1.3版本前的Solexa格式
质量值分析
我们可以计算每个位置的平均质量值:
import numpy
qualsum = numpy.zeros(len(read), int)
nreads = 0
for read in fastq_file:
qualsum += read.qual
nreads += 1
avg_qual = qualsum / float(nreads)
使用matplotlib可以绘制质量值曲线:
from matplotlib import pyplot
pyplot.plot(avg_qual)
pyplot.show()
比对数据读取
HTSeq支持多种比对文件格式的读取:
SAM文件读取
alignment_file = HTSeq.SAM_Reader("yeast_RNASeq_excerpt.sam")
for aln in alignment_file:
print(aln)
BAM文件操作
HTSeq通过pysam库支持BAM文件的读写:
# 读取BAM文件
bam_reader = HTSeq.BAM_Reader("SRR001432_head_sorted.bam")
# 写入BAM文件
bam_writer = HTSeq.BAM_Writer.from_BAM_Reader("region.bam", bam_reader)
for a in bam_reader.fetch(region="1:249000000-249200000"):
bam_writer.write(a)
bam_writer.close()
基因组区间与基因组数组
GenomicInterval类
GenomicInterval表示基因组上的一个区间,包含以下属性:
- chrom:染色体名称
- start:起始位置(0-based)
- end:结束位置(半开区间)
- strand:链方向('+'、'-'或'.')
iv = HTSeq.GenomicInterval("chr1", 100, 250, "+")
print(iv.chrom, iv.start, iv.end, iv.strand)
GenomicArray类
GenomicArray用于存储基因组位置相关的数据:
# 创建GenomicArray
ga = HTSeq.GenomicArray(chromlens, stranded=False, typecode="i")
# 赋值操作
iv = HTSeq.GenomicInterval("chr1", 100, 120, ".")
ga[iv] = 5
# 读取数据
iv = HTSeq.GenomicInterval("chr1", 90, 140, ".")
for iv2, value in ga[iv].steps():
print(iv2, value)
覆盖度分析
计算基因组覆盖度是常见的分析需求:
# 创建覆盖度数组
cvg = HTSeq.GenomicArray("auto", stranded=True, typecode="i")
# 计算覆盖度
alignment_file = HTSeq.SAM_Reader("yeast_RNASeq_excerpt.sam")
for alngt in alignment_file:
if alngt.aligned:
cvg[alngt.iv] += 1
# 输出BedGraph格式
cvg.write_bedgraph_file("plus.wig", "+")
cvg.write_bedgraph_file("minus.wig", "-")
基因组注释处理
GenomicArrayOfSets类
用于处理重叠的基因组特征:
gas = HTSeq.GenomicArrayOfSets("auto", stranded=False)
gas[HTSeq.GenomicInterval("chr1", 100, 250)] += "A"
gas[HTSeq.GenomicInterval("chr1", 360, 640)] += "A"
gas[HTSeq.GenomicInterval("chr1", 510, 950)] += "B"
# 查询重叠特征
read_iv = HTSeq.GenomicInterval("chr1", 450, 800)
fset = set()
for iv, val in gas[read_iv].steps():
fset |= val
print(sorted(fset))
实际应用示例
RNA-Seq数据分析流程
- 读取比对文件
- 计算基因表达量
- 分析差异表达
# 1. 读取比对文件
alignment_file = HTSeq.SAM_Reader("sample.sam")
# 2. 初始化基因计数字典
gene_counts = {}
# 3. 读取注释文件
features = HTSeq.GenomicArrayOfSets("auto", stranded=True)
for feature in HTSeq.GFF_Reader("annotation.gff"):
if feature.type == "exon":
features[feature.iv] += feature.attr["gene_id"]
# 4. 计数
for aln in alignment_file:
if aln.aligned:
gene_set = set()
for iv, val in features[aln.iv].steps():
gene_set |= val
for gene in gene_set:
gene_counts[gene] = gene_counts.get(gene, 0) + 1
总结
HTSeq为高通量测序数据分析提供了强大的Python工具集,主要特点包括:
- 支持多种测序数据格式的读取
- 提供基因组区间和数组的高效操作
- 简化了覆盖度计算等常见分析任务
- 便于整合到自定义分析流程中
通过合理使用HTSeq的各种功能,研究人员可以构建灵活、高效的数据分析流程,满足各种定制化分析需求。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
288
2.59 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
604
181
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
144
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
75
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
136
57