IBM Japan Technology项目:使用Watson Studio中的Jupyter Notebook构建客户流失预测模型
2025-06-02 07:38:00作者:羿妍玫Ivan
概述
本教程将详细介绍如何在IBM Watson Studio环境中使用Jupyter Notebook构建机器学习模型。我们将以Kaggle提供的客户流失数据集为例,展示从数据导入到模型部署的完整机器学习工作流程。该项目属于IBM Japan Technology系列技术实践的一部分,特别适合希望掌握Watson Studio平台数据科学能力的技术人员。
技术背景
Watson Studio是IBM提供的集成化数据科学平台,其核心优势在于:
- 提供完整的云端Jupyter Notebook环境
- 内置与IBM Cloud Object Storage的无缝集成
- 支持从模型开发到部署的全生命周期管理
- 提供多种建模方式选择(可视化工具与编程接口)
准备工作
环境配置要求
在开始本教程前,您需要确保具备以下环境:
- 有效的IBM Cloud账户
- 已开通Watson Studio服务
- 已配置IBM Cloud Object Storage
- 已创建Watson Machine Learning服务实例
数据集说明
我们将使用电信行业客户流失数据集,包含以下典型特征:
- 客户基本信息(服务时长、合同类型等)
- 服务使用情况(国际通话、流量使用等)
- 账单详情(月费用、付款方式等)
- 标签字段(是否流失)
核心操作步骤
1. 创建部署空间
部署空间是模型管理的关键单元,创建步骤包括:
- 在Watson Studio导航栏选择"Deployments"
- 点击"New Deployment Space+"创建新空间
- 确保关联正确的存储和机器学习服务
- 记录生成的Space GUID(后续步骤需要)
2. 配置API访问凭证
- 通过IBM Cloud控制台创建API密钥
- 记录密钥值和对应区域信息(如us-south等)
- 确定Watson Machine Learning服务实例位置
3. Notebook创建与配置
- 在项目中点击"Add to Project"选择Notebook
- 选择"From URL"方式导入
- 指定Python 3.7运行时环境
- 输入Notebook URL完成创建
关键技巧:首次运行时需要将数据文件插入到pandas DataFrame,变量名需统一为"df"以保证后续代码正常运行。
机器学习工作流程详解
数据探索阶段
使用pandas和可视化工具进行初步分析:
# 显示基础统计信息
df.describe()
# 绘制特征分布图
import matplotlib.pyplot as plt
df['Churn'].value_counts().plot(kind='bar')
数据预处理
典型预处理操作包括:
- 分类变量编码(LabelEncoder/OneHotEncoder)
- 数值特征标准化
- 无关特征删除(如客户标识)
- 处理缺失值
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
numerical_features = ['tenure', 'MonthlyCharges']
df[numerical_features] = scaler.fit_transform(df[numerical_features])
模型训练与评估
采用分层交叉验证确保数据分布一致性:
from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import GradientBoostingClassifier
skf = StratifiedKFold(n_splits=5)
model = GradientBoostingClassifier()
for train_idx, test_idx in skf.split(X, y):
X_train, X_test = X[train_idx], X[test_idx]
y_train, y_test = y[train_idx], y[test_idx]
model.fit(X_train, y_train)
评估指标重点关注:
- 准确率(Accuracy)
- 精确率(Precision)
- 召回率(Recall)
- F1 Score
- AUC-ROC曲线
模型部署实践
保存模型到WML
from ibm_watson_machine_learning import APIClient
wml_credentials = {
"apikey": "your_api_key",
"url": "https://us-south.ml.cloud.ibm.com"
}
client = APIClient(wml_credentials)
model_details = client.repository.store_model(model=model, meta_props={
client.repository.ModelMetaNames.NAME: "Churn_Prediction_Model"
})
测试部署的模型
通过REST API测试部署的模型:
scoring_payload = {
"input_data": [{
"fields": ["feature1", "feature2", ...],
"values": [[value1, value2, ...]]
}]
}
predictions = client.deployments.score(scoring_endpoint, scoring_payload)
最佳实践建议
- 资源监控:定期检查Cloud Object Storage使用情况
- 版本控制:重要Notebook版本应及时下载备份
- 成本优化:非活跃项目应停止相关服务实例
- 安全实践:API密钥需定期轮换更新
常见问题排查
- 数据加载失败:检查CSV文件编码格式(建议UTF-8)
- 内存不足:减小批次处理数据量或升级运行时环境
- API连接超时:确认区域设置是否正确
- 依赖缺失:在Notebook开头集中安装所需包
进阶学习方向
完成本教程后,建议进一步探索:
- 自动化机器学习(AutoML)功能应用
- 模型性能监控与漂移检测
- 使用Watson OpenScale进行模型公平性评估
- 构建端到端的AI应用流水线
通过本实践,您已掌握Watson Studio中Jupyter Notebook的核心使用方法,能够独立完成从数据准备到模型部署的完整机器学习项目。这种技能在金融风控、客户关系管理等多个领域都有广泛应用价值。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1