Facebook Archive Hadoop-20 项目教程
1. 项目介绍
Facebook Archive Hadoop-20 是 Facebook 基于 Apache Hadoop 0.20 版本开发的一个实时分布式文件系统。该项目主要用于 Facebook 的集群环境中,支持仓库工作负载和实时 HBase/Scribe 工作负载。Hadoop-20 是 Apache Hadoop 的一个分支,包含了 Facebook 在原代码基础上的一些额外补丁和优化。
该项目已经被 Facebook 归档,不再进行更新和支持。如果你希望继续开发这个代码,建议你 fork 该项目。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你的开发环境已经安装了以下工具:
- Java JDK 1.6 或更高版本
- Maven 3.x
- Git
2.2 克隆项目
首先,克隆 Facebook Archive Hadoop-20 项目到本地:
git clone https://github.com/facebookarchive/hadoop-20.git
cd hadoop-20
2.3 编译项目
使用 Maven 编译项目:
mvn clean package
2.4 启动单节点 Hadoop 集群
在项目根目录下,运行以下命令启动单节点 Hadoop 集群:
bin/singleNodeHadoop start
2.5 验证安装
启动后,可以通过访问以下 URL 来验证 Hadoop 是否正常运行:
http://localhost:50070
3. 应用案例和最佳实践
3.1 仓库工作负载
Facebook Archive Hadoop-20 主要用于处理大规模的数据仓库工作负载。通过 Hadoop 的分布式文件系统(HDFS)和 MapReduce 框架,可以高效地处理和分析海量数据。
3.2 实时 HBase/Scribe 工作负载
除了仓库工作负载,该项目还支持实时 HBase 和 Scribe 工作负载。HBase 是一个分布式、面向列的数据库,而 Scribe 是一个分布式日志收集系统,两者结合可以实现高效的实时数据处理。
3.3 最佳实践
- 数据分区:合理的数据分区策略可以显著提高 MapReduce 任务的性能。
- 压缩:使用压缩技术可以减少数据传输和存储的开销。
- 资源管理:合理配置 Hadoop 集群的资源,避免资源争用和性能瓶颈。
4. 典型生态项目
4.1 Apache Hive
Apache Hive 是一个基于 Hadoop 的数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类 SQL 查询功能。
4.2 Apache HBase
Apache HBase 是一个分布式、面向列的数据库,适用于需要实时读写访问的超大规模数据集。
4.3 Apache Pig
Apache Pig 是一个高级数据流语言和并行计算框架,适用于大规模数据集的分析。
4.4 Apache Spark
Apache Spark 是一个快速、通用的大数据处理引擎,支持内存计算和迭代算法,适用于实时数据处理和机器学习任务。
通过这些生态项目的结合,可以构建一个完整的大数据处理和分析平台,满足不同场景下的需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00