开源项目教程:Facebook Archive Models
2024-08-17 12:43:43作者:江焘钦
项目目录结构及介绍
该项目,位于 https://github.com/facebookarchive/models.git,是由Facebook过去维护的一个模型库的存档版本。请注意,“facebookarchive”表明这是一个归档的仓库,意味着它可能不再活跃更新或得到官方支持。以下是其典型目录结构概述:
.
├── LICENSE.txt # 许可证文件
├── README.md # 项目简介和快速入门指南
├── models # 主要模型目录
│ ├── model_a # 示例模型A的子目录,包含实现代码和配置
│ │ ├── __init__.py
│ │ ├── model.py # 模型A的核心实现
│ │ └── config.yaml # 模型A的配置文件
│ ├── model_b # 另一个示例模型B的目录结构类似model_a
│ │ ├── __init__.py
│ │ ├── model.py
│ │ └── config.yaml
├── scripts # 脚本文件夹,用于数据处理或训练脚本
│ ├── train_model_a.sh # 训练模型A的bash脚本
│ └── eval_model_b.py # 评估模型B的Python脚本
└── requirements.txt # 项目运行所需的依赖库列表
说明:
- models: 包含各个模型的实现,每个模型有自己的子目录。
- scripts: 提供执行特定任务(如训练、评估)的脚本。
- config.yaml: 配置文件,定义模型参数、学习率等设置。
- requirements.txt: 列出安装项目所需的所有Python库。
项目的启动文件介绍
启动文件通常是指用于驱动模型训练或应用的脚本。以模型A为例,其启动流程可能涉及以下步骤:
- 配置准备:首先修改
models/model_a/config.yaml中的配置,包括数据路径、模型参数等。 - 环境搭建:确保你的环境中安装了所有在
requirements.txt中列出的库。 - 启动命令:在终端运行位于
scripts目录下的启动脚本,例如:
cd scripts
./train_model_a.sh
该脚本会根据预先设定的配置文件来初始化模型A并开始训练过程。
项目的配置文件介绍
配置文件(config.yaml)是项目中非常关键的一部分,它允许用户无需改动源代码即可定制化模型的行为。一个典型的配置文件结构可能包含以下几个部分:
# 基础配置
data_path: "/path/to/data"
model_type: "ResNet50"
# 训练设置
batch_size: 32
epochs: 100
learning_rate: 0.001
# 其他高级选项
optimizer: "Adam"
loss_function: "CrossEntropyLoss"
# 特定模型参数
num_classes: 1000
pretrained: True
- 基础配置:指向数据集的位置,以及选择模型类型。
- 训练设置:包括批大小、总迭代次数(周期)、初始学习率。
- 优化器与损失函数:指定训练时使用的优化算法和损失函数。
- 模型特有参数:针对具体模型的参数调整,比如类别数、是否使用预训练权重。
注意:实际的配置文件内容和结构可能会根据不同模型的具体需求有所变化,以上仅作为一个通用示例。在操作前,请仔细阅读项目文档和配置文件注释以获取精确指导。由于此项目已归档,务必检查旧版本兼容性和潜在迁移问题。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885