ADTK 时间序列异常检测工具包使用教程
2024-09-13 04:29:17作者:范垣楠Rhoda
1. 项目介绍
ADTK(Anomaly Detection Toolkit)是一个用于无监督/基于规则的时间序列异常检测的Python包。由于异常的性质在不同情况下可能有所不同,因此一个模型可能无法适用于所有异常检测问题。选择和组合适当的检测算法(检测器)、特征工程方法(转换器)和集成方法(聚合器)是构建有效异常检测模型的关键。
ADTK提供了一组常见的检测器、转换器和聚合器,并具有统一的API,以及将它们连接在一起的管道类。此外,它还提供了一些函数来处理和可视化时间序列和异常事件。
2. 项目快速启动
安装
首先,确保你已经安装了Python 3.5或更高版本。然后,你可以通过以下命令从PyPI安装ADTK:
pip install adtk
或者,你可以从源代码安装最新的(但可能不稳定的)版本:
git clone https://github.com/arundo/adtk.git
cd adtk/
git checkout develop
pip install ./
快速启动示例
以下是一个简单的示例,展示如何使用ADTK检测时间序列中的季节性异常。
import pandas as pd
from adtk.data import validate_series
from adtk.detector import SeasonalAD
from adtk.visualization import plot
# 加载并验证训练数据
s_train = pd.read_csv("training.csv", index_col="Datetime", parse_dates=True, squeeze=True)
s_train = validate_series(s_train)
# 可视化训练数据
plot(s_train)
# 检测季节性异常
seasonal_ad = SeasonalAD()
anomalies = seasonal_ad.fit_detect(s_train)
# 可视化检测结果
plot(s_train, anomaly=anomalies, anomaly_color="red", anomaly_tag="marker")
3. 应用案例和最佳实践
案例1:交通流量异常检测
假设你有一个城市的交通流量数据,并且你希望检测出违反季节性模式的异常情况。你可以使用ADTK中的SeasonalAD
检测器来实现这一目标。
# 加载测试数据
s_test = pd.read_csv("testing.csv", index_col="Datetime", parse_dates=True, squeeze=True)
s_test = validate_series(s_test)
# 应用训练好的模型
anomalies_pred = seasonal_ad.detect(s_test)
# 可视化预测结果
plot(s_test, anomaly=anomalies_pred, ts_linewidth=1, anomaly_color='red', anomaly_tag="marker")
案例2:电力消耗异常检测
在电力消耗数据中,异常可能表现为突然的峰值或谷值。你可以使用ADTK中的ThresholdAD
检测器来检测这些异常。
from adtk.detector import ThresholdAD
# 设置阈值
threshold_ad = ThresholdAD(high=3000, low=1000)
anomalies = threshold_ad.detect(s_train)
# 可视化检测结果
plot(s_train, anomaly=anomalies, anomaly_color="red", anomaly_tag="marker")
4. 典型生态项目
ADTK作为一个时间序列异常检测工具包,可以与其他时间序列分析和机器学习库结合使用,例如:
- Pandas: 用于数据处理和时间序列操作。
- NumPy: 用于数值计算和数组操作。
- Scikit-learn: 用于机器学习模型的构建和评估。
- Matplotlib/Seaborn: 用于数据可视化。
通过结合这些工具,你可以构建更复杂的时间序列分析和异常检测系统。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193