Open-Sora项目中非时序参数冻结策略的技术分析
2025-05-08 05:45:20作者:魏侃纯Zoe
引言
在视频生成模型Open-Sora的开发过程中,参数冻结策略是一个值得深入探讨的技术话题。本文将从实验角度分析非时序参数冻结对模型性能的影响,为相关领域的研究者提供实践参考。
实验设计与发现
Open-Sora团队针对非时序参数冻结进行了系统性实验,主要尝试了三种训练策略:
-
完全冻结策略:仅训练时序相关参数,保持其他参数不变。实验结果显示,这种策略会导致生成的视频过于静态,缺乏动态变化,视频质量显著下降。
-
分阶段解冻策略:先训练时序参数,再解冻所有参数进行联合训练。出乎意料的是,这种策略的表现甚至不如从头开始训练所有参数。
-
全参数训练策略:同时训练所有参数(包括时序和非时序)。实验证明这是三种策略中效果最佳的方法。
技术原理分析
参数冻结策略失效的原因可以从以下几个方面理解:
-
参数耦合性:在视频生成任务中,时序特征与空间特征高度耦合。单独优化时序参数会破坏这种耦合关系,导致特征表达不完整。
-
梯度传播限制:冻结部分参数会阻断梯度在这些层的反向传播,影响整个网络的优化过程。特别是当冻结层位于网络较深位置时,这种影响更为显著。
-
表征学习需求:视频生成需要同时建模空间和时间维度,仅优化部分参数难以学习到有效的联合表征。
扩展实验与发现
团队还尝试了冻结文本相关参数的变体实验,同样未能取得理想效果。这表明:
- 跨模态交互的重要性:文本编码器和视觉解码器之间的参数需要协同优化。
- 端到端训练的优势:保持所有参数可训练有利于模型学习到更鲁棒的特征表示。
实践建议
基于实验结果,我们给出以下实践建议:
- 避免在Open-Sora模型中使用参数冻结策略,特别是对于非时序参数。
- 采用全参数训练可以获得最优的视频生成质量。
- 如果必须使用冻结策略,建议仅应用于预训练阶段的特定场景,且需要谨慎评估效果。
结论
Open-Sora项目的实验表明,在视频生成领域,保持所有参数可训练是最优策略。这一发现对类似时序生成模型的开发具有重要参考价值,提醒研究者需要根据任务特性谨慎选择参数优化策略。未来可以进一步探索更精细化的参数优化策略,如分层学习率等替代方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
418
3.21 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
683
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
664
React Native鸿蒙化仓库
JavaScript
266
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259