Fira优化器快速入门指南:高效训练神经网络模型
2025-05-31 15:10:33作者:董斯意
前言
在深度学习领域,优化器的选择对模型训练效果有着至关重要的影响。Fira优化器作为一种新型的内存高效优化器,通过创新的参数压缩技术,能够在保持模型性能的同时显著降低内存占用。本文将详细介绍如何使用Fira优化器训练一个简单的全连接神经网络,并在MNIST数据集上进行测试。
环境准备
在开始之前,需要确保已安装必要的Python包:
pip install torch torchvision fira
这三个包分别提供了PyTorch深度学习框架、计算机视觉相关工具集以及Fira优化器本身。
模型定义
我们构建一个简单的全连接神经网络,包含一个隐藏层和一个输出层:
import torch.nn as nn
import torch.nn.functional as F
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(28*28, 128) # 输入层到隐藏层
self.fc2 = nn.Linear(128, 10) # 隐藏层到输出层
def forward(self, x):
x = x.view(-1, 28*28) # 将图像展平为一维向量
x = F.relu(self.fc1(x)) # 隐藏层使用ReLU激活函数
x = self.fc2(x) # 输出层不使用激活函数
return x
这个网络结构简单但足以处理MNIST这样的基础分类任务。
数据准备
MNIST数据集包含60,000张训练图像和10,000张测试图像,每张都是28×28像素的手写数字:
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义数据转换:归一化处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)
# 创建数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
模型初始化与优化器配置
Fira优化器的核心优势在于其内存高效性,通过divide_params函数可以灵活配置:
from fira import FiraAdamW, divide_params
model = SimpleNN()
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
# 参数分组配置
param_groups = divide_params(
model,
target_modules_list=["Linear"], # 指定应用Fira的模块类型
rank=8, # 压缩维度
update_proj_gap=200, # 梯度投影更新间隔
alpha=1.0, # 学习率调整系数
proj_type='std' # 投影类型
)
# 初始化Fira优化器
optimizer = FiraAdamW(
param_groups,
lr=0.01, # 学习率
betas=(0.9, 0.999), # Adam的beta参数
eps=1e-06, # 数值稳定性参数
weight_decay=0.0, # 权重衰减
correct_bias=True # 是否修正偏差
)
训练与测试流程
定义训练和测试函数,形成完整的训练循环:
def train(model, train_loader, criterion, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 每100个batch打印一次训练进度
if batch_idx % 100 == 0:
print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}] Loss: {loss.item():.6f}')
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({accuracy:.2f}%)\n')
# 训练5个epoch
for epoch in range(1, 6):
train(model, train_loader, criterion, optimizer, epoch)
test(model, test_loader, criterion)
性能对比
Fira优化器在保持模型性能的同时显著降低了内存占用。以下是不同优化器的测试结果对比:
-
低秩Fira (rank=8)
- 测试集平均损失: 0.0036
- 准确率: 95.04%
-
标准Adam优化器
- 测试集平均损失: 0.0040
- 准确率: 94.34%
-
AdamW优化器
- 测试集平均损失: 0.0040
- 准确率: 93.68%
Fira核心功能详解
1. divide_params函数
divide_params是Fira的核心配置函数,主要参数包括:
target_modules_list: 指定需要应用Fira优化的模块名称列表rank: 控制参数压缩的维度,值越小内存占用越低但可能影响模型性能update_proj_gap: 梯度投影更新间隔,影响计算效率alpha: 学习率调整系数,类似LoRA中的alpha参数proj_type: 投影类型,默认为'std'
2. FiraAdamW优化器
FiraAdamW在标准AdamW基础上增加了内存优化功能,主要参数包括:
lr: 学习率,通常需要比标准优化器设置得稍大betas: Adam的动量参数eps: 数值稳定项weight_decay: 权重衰减系数correct_bias: 是否修正Adam的偏差
结语
Fira优化器通过创新的参数压缩技术,为深度学习模型训练提供了内存高效的解决方案。本文通过MNIST分类任务展示了Fira的基本使用方法,实际应用中可以根据具体任务调整rank等参数以获得最佳性能。对于更大的模型和更复杂的任务,Fira的内存优势将更加明显。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
515
3.7 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
874
546
Ascend Extension for PyTorch
Python
317
361
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
333
155
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.31 K
734
暂无简介
Dart
759
182
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.05 K
519