Fira优化器快速入门指南:高效训练神经网络模型
2025-05-31 15:10:33作者:董斯意
前言
在深度学习领域,优化器的选择对模型训练效果有着至关重要的影响。Fira优化器作为一种新型的内存高效优化器,通过创新的参数压缩技术,能够在保持模型性能的同时显著降低内存占用。本文将详细介绍如何使用Fira优化器训练一个简单的全连接神经网络,并在MNIST数据集上进行测试。
环境准备
在开始之前,需要确保已安装必要的Python包:
pip install torch torchvision fira
这三个包分别提供了PyTorch深度学习框架、计算机视觉相关工具集以及Fira优化器本身。
模型定义
我们构建一个简单的全连接神经网络,包含一个隐藏层和一个输出层:
import torch.nn as nn
import torch.nn.functional as F
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(28*28, 128) # 输入层到隐藏层
self.fc2 = nn.Linear(128, 10) # 隐藏层到输出层
def forward(self, x):
x = x.view(-1, 28*28) # 将图像展平为一维向量
x = F.relu(self.fc1(x)) # 隐藏层使用ReLU激活函数
x = self.fc2(x) # 输出层不使用激活函数
return x
这个网络结构简单但足以处理MNIST这样的基础分类任务。
数据准备
MNIST数据集包含60,000张训练图像和10,000张测试图像,每张都是28×28像素的手写数字:
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义数据转换:归一化处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)
# 创建数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
模型初始化与优化器配置
Fira优化器的核心优势在于其内存高效性,通过divide_params函数可以灵活配置:
from fira import FiraAdamW, divide_params
model = SimpleNN()
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
# 参数分组配置
param_groups = divide_params(
model,
target_modules_list=["Linear"], # 指定应用Fira的模块类型
rank=8, # 压缩维度
update_proj_gap=200, # 梯度投影更新间隔
alpha=1.0, # 学习率调整系数
proj_type='std' # 投影类型
)
# 初始化Fira优化器
optimizer = FiraAdamW(
param_groups,
lr=0.01, # 学习率
betas=(0.9, 0.999), # Adam的beta参数
eps=1e-06, # 数值稳定性参数
weight_decay=0.0, # 权重衰减
correct_bias=True # 是否修正偏差
)
训练与测试流程
定义训练和测试函数,形成完整的训练循环:
def train(model, train_loader, criterion, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 每100个batch打印一次训练进度
if batch_idx % 100 == 0:
print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}] Loss: {loss.item():.6f}')
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({accuracy:.2f}%)\n')
# 训练5个epoch
for epoch in range(1, 6):
train(model, train_loader, criterion, optimizer, epoch)
test(model, test_loader, criterion)
性能对比
Fira优化器在保持模型性能的同时显著降低了内存占用。以下是不同优化器的测试结果对比:
-
低秩Fira (rank=8)
- 测试集平均损失: 0.0036
- 准确率: 95.04%
-
标准Adam优化器
- 测试集平均损失: 0.0040
- 准确率: 94.34%
-
AdamW优化器
- 测试集平均损失: 0.0040
- 准确率: 93.68%
Fira核心功能详解
1. divide_params函数
divide_params是Fira的核心配置函数,主要参数包括:
target_modules_list: 指定需要应用Fira优化的模块名称列表rank: 控制参数压缩的维度,值越小内存占用越低但可能影响模型性能update_proj_gap: 梯度投影更新间隔,影响计算效率alpha: 学习率调整系数,类似LoRA中的alpha参数proj_type: 投影类型,默认为'std'
2. FiraAdamW优化器
FiraAdamW在标准AdamW基础上增加了内存优化功能,主要参数包括:
lr: 学习率,通常需要比标准优化器设置得稍大betas: Adam的动量参数eps: 数值稳定项weight_decay: 权重衰减系数correct_bias: 是否修正Adam的偏差
结语
Fira优化器通过创新的参数压缩技术,为深度学习模型训练提供了内存高效的解决方案。本文通过MNIST分类任务展示了Fira的基本使用方法,实际应用中可以根据具体任务调整rank等参数以获得最佳性能。对于更大的模型和更复杂的任务,Fira的内存优势将更加明显。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
暂无简介
Dart
633
143
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
243
316
Ascend Extension for PyTorch
Python
194
212