ggplot2图形设计实战:伦敦共享单车周末使用量可视化分析
2025-06-02 23:27:24作者:董宙帆
引言
在数据可视化领域,ggplot2是R语言中最强大的绘图系统之一。本文基于rstudio-conf-2022中关于ggplot2图形设计的研讨会材料,通过一个实际案例——伦敦共享单车周末使用量数据的可视化,深入讲解ggplot2的核心概念和实用技巧。
数据准备
首先我们需要导入并预处理数据:
bikes <- readr::read_csv("london-bikes-custom.csv", col_types = "Dcfffilllddddc")
bikes$season <- forcats::fct_inorder(bikes$season)
数据集包含了伦敦共享单车的使用记录,包括日期、使用量、天气情况等信息。我们特别关注周末(is_weekend=TRUE)的数据。
基础散点图
我们从最简单的散点图开始,展示周末单车使用量随时间的变化:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_point()
这个基础图形已经能展示出数据的基本趋势,但缺乏更多信息维度。
添加视觉编码
为了区分白天和夜晚的使用情况,我们通过颜色和形状进行编码:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_point(aes(color = day_night, shape = day_night))
这里使用了day_night变量来区分白天(day)和夜晚(night),分别用不同颜色和形状表示。
连接数据点
为了更清晰地展示趋势,我们添加连接线:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_point(aes(color = day_night, shape = day_night)) +
geom_line(color = "grey")
但这样所有点都连接在一起,我们需要按白天夜晚分组连接:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_line(aes(group = day_night), color = "grey") +
geom_point(aes(color = day_night, shape = day_night))
注意图层顺序很重要,先画线后画点可以避免点被线遮挡。
geom_line与geom_path的区别
这两个几何对象都用于绘制线条,但有重要区别:
geom_line():按x轴顺序连接点geom_path():按数据原始顺序连接点
当x轴不是有序变量时,两者的差异会很明显。对于时间序列数据,两者效果通常相同。
主题美化
应用主题可以让图形更专业:
g <- ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_line(aes(group = day_night), color = "grey") +
geom_point(aes(color = day_night, shape = day_night))
g + theme_minimal(base_size = 15, base_family = "Lora") +
theme(legend.position = "top", panel.grid.minor = element_blank())
这里使用了theme_minimal()作为基础主题,并调整了字体大小、字体族和图例位置。
添加标签
清晰的标签是优秀可视化的关键:
g + labs(
x = "Weekend date",
y = "Reported bike shares",
color = NULL,
shape = NULL
) + theme_minimal(base_size = 15, base_family = "Lora") +
theme(legend.position = "top", panel.grid.minor = element_blank())
通过将color和shape图例标题设为NULL,可以避免重复的图例标题。
图形保存
最后将图形保存为高质量矢量图:
ggsave("weekend_bikes.pdf", width = 9, height = 5, device = cairo_pdf)
建议使用PDF等矢量格式保存,便于后续调整和出版。
进阶技巧:用形状区分周六周日
作为扩展,我们可以用点形状进一步区分周六和周日:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_line(aes(group = day_night), color = "grey") +
geom_point(aes(color = day_night, shape = lubridate::wday(date, label = TRUE))) +
labs(x = "Weekend date", y = "Reported bike shares") +
theme_minimal(base_size = 15, base_family = "Lora")
这里使用lubridate::wday()提取星期几信息,并用不同形状表示。
总结
通过这个案例,我们学习了:
- 基础散点图的创建
- 多维度视觉编码(颜色、形状)
- 数据点连接技巧
- 主题定制和标签优化
- 图形导出最佳实践
这些技巧可以应用于各种时间序列数据的可视化场景,帮助我们从数据中发现更多洞见。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249