ggplot2图形设计实战:伦敦共享单车周末使用量可视化分析
2025-06-02 17:48:54作者:董宙帆
引言
在数据可视化领域,ggplot2是R语言中最强大的绘图系统之一。本文基于rstudio-conf-2022中关于ggplot2图形设计的研讨会材料,通过一个实际案例——伦敦共享单车周末使用量数据的可视化,深入讲解ggplot2的核心概念和实用技巧。
数据准备
首先我们需要导入并预处理数据:
bikes <- readr::read_csv("london-bikes-custom.csv", col_types = "Dcfffilllddddc")
bikes$season <- forcats::fct_inorder(bikes$season)
数据集包含了伦敦共享单车的使用记录,包括日期、使用量、天气情况等信息。我们特别关注周末(is_weekend=TRUE)的数据。
基础散点图
我们从最简单的散点图开始,展示周末单车使用量随时间的变化:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_point()
这个基础图形已经能展示出数据的基本趋势,但缺乏更多信息维度。
添加视觉编码
为了区分白天和夜晚的使用情况,我们通过颜色和形状进行编码:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_point(aes(color = day_night, shape = day_night))
这里使用了day_night变量来区分白天(day)和夜晚(night),分别用不同颜色和形状表示。
连接数据点
为了更清晰地展示趋势,我们添加连接线:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_point(aes(color = day_night, shape = day_night)) +
geom_line(color = "grey")
但这样所有点都连接在一起,我们需要按白天夜晚分组连接:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_line(aes(group = day_night), color = "grey") +
geom_point(aes(color = day_night, shape = day_night))
注意图层顺序很重要,先画线后画点可以避免点被线遮挡。
geom_line与geom_path的区别
这两个几何对象都用于绘制线条,但有重要区别:
geom_line():按x轴顺序连接点geom_path():按数据原始顺序连接点
当x轴不是有序变量时,两者的差异会很明显。对于时间序列数据,两者效果通常相同。
主题美化
应用主题可以让图形更专业:
g <- ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_line(aes(group = day_night), color = "grey") +
geom_point(aes(color = day_night, shape = day_night))
g + theme_minimal(base_size = 15, base_family = "Lora") +
theme(legend.position = "top", panel.grid.minor = element_blank())
这里使用了theme_minimal()作为基础主题,并调整了字体大小、字体族和图例位置。
添加标签
清晰的标签是优秀可视化的关键:
g + labs(
x = "Weekend date",
y = "Reported bike shares",
color = NULL,
shape = NULL
) + theme_minimal(base_size = 15, base_family = "Lora") +
theme(legend.position = "top", panel.grid.minor = element_blank())
通过将color和shape图例标题设为NULL,可以避免重复的图例标题。
图形保存
最后将图形保存为高质量矢量图:
ggsave("weekend_bikes.pdf", width = 9, height = 5, device = cairo_pdf)
建议使用PDF等矢量格式保存,便于后续调整和出版。
进阶技巧:用形状区分周六周日
作为扩展,我们可以用点形状进一步区分周六和周日:
ggplot(filter(bikes, is_weekend == TRUE), aes(x = date, y = count)) +
geom_line(aes(group = day_night), color = "grey") +
geom_point(aes(color = day_night, shape = lubridate::wday(date, label = TRUE))) +
labs(x = "Weekend date", y = "Reported bike shares") +
theme_minimal(base_size = 15, base_family = "Lora")
这里使用lubridate::wday()提取星期几信息,并用不同形状表示。
总结
通过这个案例,我们学习了:
- 基础散点图的创建
- 多维度视觉编码(颜色、形状)
- 数据点连接技巧
- 主题定制和标签优化
- 图形导出最佳实践
这些技巧可以应用于各种时间序列数据的可视化场景,帮助我们从数据中发现更多洞见。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210