Manalyze 静态分析工具使用教程
2024-09-17 01:06:11作者:薛曦旖Francesca
1. 项目介绍
Manalyze 是一个用于 PE(Portable Executable)文件的静态分析工具,旨在检测潜在的恶意行为。它由 C++ 编写,支持 Windows 和 Linux 平台,并且是开源的,遵循 GPLv3 许可证。Manalyze 通过解析 PE 文件,识别编译器、检测打包的可执行文件、应用 ClamAV 和 Yara 签名、查找可疑的字符串和导入组合等方式,帮助用户进行初步的恶意软件分析。
2. 项目快速启动
2.1 安装依赖
在开始之前,确保你的系统已经安装了必要的依赖库。以下是 Linux 和 Windows 平台的安装命令:
Linux
sudo apt-get install libboost-regex-dev libboost-program-options-dev libboost-system-dev libboost-filesystem-dev libssl-dev build-essential cmake git
Windows
- 下载并安装 Boost 库:Boost 官方网站
- 设置环境变量
BOOST_ROOT,指向 Boost 库的安装路径。 - 安装 CMake 和 Git。
2.2 克隆项目并编译
git clone https://github.com/JusticeRage/Manalyze.git
cd Manalyze
cmake .
make -j5
2.3 运行 Manalyze
编译完成后,你可以在 bin 目录下找到 manalyze 可执行文件。运行以下命令进行测试:
./bin/manalyze --version
3. 应用案例和最佳实践
3.1 检测恶意软件
Manalyze 可以用于检测潜在的恶意软件。例如,你可以使用以下命令分析一个可执行文件:
./bin/manalyze suspicious_file.exe
3.2 生成 ClamAV 规则
Manalyze 支持生成 ClamAV 规则,帮助你更好地识别恶意软件。运行以下命令生成规则:
python bin/yara_rules/update_clamav_signatures.py
3.3 分析 PE 文件结构
你可以使用 Manalyze 来详细分析 PE 文件的结构,例如查看导入表、导出表、资源等信息:
./bin/manalyze -dimports,sections,resources suspicious_file.exe
4. 典型生态项目
4.1 Manalyzer.org
Manalyzer.org 是一个在线服务,基于 Manalyze 工具,提供 PE 文件的静态分析服务。你可以上传文件进行分析,并查看详细的分析报告。
4.2 Yara
Yara 是一个用于恶意软件识别的规则引擎,Manalyze 集成了 Yara 规则,帮助用户更准确地识别恶意软件。
4.3 ClamAV
ClamAV 是一个开源的反病毒引擎,Manalyze 支持应用 ClamAV 签名进行恶意软件检测。
通过以上步骤,你可以快速上手 Manalyze 静态分析工具,并利用其强大的功能进行 PE 文件的静态分析。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C062
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
453
3.37 K
Ascend Extension for PyTorch
Python
255
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
833
409
暂无简介
Dart
706
168
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
165
61
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19