FlagEmbedding项目中的M3-Embedding训练细节解析
2025-05-24 09:02:57作者:宗隆裙
训练阶段与参数配置
FlagEmbedding项目中的M3-Embedding模型采用了分阶段训练策略,包含预训练和微调两个主要阶段。在预训练阶段,模型在大规模无监督数据上进行训练,最大序列长度设置为512(查询)和8192(段落),学习率为5×10⁻⁵,权重衰减为0.01,预热比例为0.1。整个预训练过程共进行25,000步训练,相当于1个完整的数据周期(epoch)。
微调阶段设计
微调阶段采用了更为精细的训练策略,分为两个子阶段:
- 预热阶段:共进行6,000步训练,相当于2个epoch。其中第一个epoch专注于密集嵌入(dense embedding)的训练,第二个epoch则同时训练稀疏嵌入(sparse embedding)和多向量表示(multi-vectors)。
- 统一微调阶段:在预热完成后,进行1个epoch的统一训练,采用自知识蒸馏(self-knowledge distillation)方法。
训练资源分配
项目采用了分布式训练策略,预训练阶段使用了96块A800(80GB)GPU,而微调阶段则使用了24块相同规格的GPU。这种资源分配策略体现了不同训练阶段对计算资源的需求差异。
批处理策略
项目针对不同长度的序列采用了差异化的批处理策略。具体来说,根据序列长度范围(如0-500、500-1000等)设置了不同的批大小,这种细粒度的批处理策略有助于提高训练效率和模型性能。在微调阶段,每个查询采样7个负样本,进一步优化了对比学习的效果。
技术实现要点
项目通过特定的参数设置实现了不同嵌入类型的分离训练。这种模块化训练方式允许开发者根据需求灵活调整训练重点,无论是密集嵌入、稀疏嵌入还是多向量表示,都可以通过参数配置进行独立或联合训练。这种设计既保证了训练的灵活性,又确保了最终模型的多功能性。
M3-Embedding的这种训练策略设计充分考虑了多语言、多功能和多粒度文本嵌入的需求,通过分阶段、模块化的训练方式,最终实现了高质量的通用文本嵌入表示。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
663
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259