首页
/ MNIST-SVHN 迁移学习项目教程

MNIST-SVHN 迁移学习项目教程

2024-08-17 06:36:32作者:傅爽业Veleda

1. 项目的目录结构及介绍

mnist-svhn-transfer/
├── data/
│   ├── mnist/
│   ├── svhn/
│   └── processed/
├── models/
│   ├── alexnet.py
│   ├── lenet.py
│   └── resnet.py
├── utils/
│   ├── dataset.py
│   ├── logger.py
│   └── utils.py
├── config.py
├── main.py
├── README.md
└── requirements.txt

目录结构介绍

  • data/: 存储MNIST和SVHN数据集的原始和处理后的文件。
    • mnist/: MNIST数据集文件。
    • svhn/: SVHN数据集文件。
    • processed/: 处理后的数据文件。
  • models/: 包含不同模型的实现文件。
    • alexnet.py: AlexNet模型实现。
    • lenet.py: LeNet模型实现。
    • resnet.py: ResNet模型实现。
  • utils/: 包含辅助功能的实现文件。
    • dataset.py: 数据集处理和加载功能。
    • logger.py: 日志记录功能。
    • utils.py: 其他辅助功能。
  • config.py: 项目配置文件。
  • main.py: 项目启动文件。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖包列表。

2. 项目的启动文件介绍

main.py

main.py 是项目的启动文件,负责初始化配置、加载数据、定义模型、训练和评估模型。以下是主要功能模块的介绍:

import argparse
from config import Config
from utils.dataset import get_loader
from models.alexnet import AlexNet
from models.lenet import LeNet
from models.resnet import ResNet

def main(config):
    # 加载数据
    train_loader = get_loader(config.train_data_path, config.batch_size)
    test_loader = get_loader(config.test_data_path, config.batch_size)

    # 定义模型
    if config.model == 'alexnet':
        model = AlexNet(config.num_classes)
    elif config.model == 'lenet':
        model = LeNet(config.num_classes)
    elif config.model == 'resnet':
        model = ResNet(config.num_classes)

    # 训练模型
    model.train(train_loader, test_loader, config.num_epochs, config.learning_rate)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, default='config.py', help='配置文件路径')
    args = parser.parse_args()

    config = Config(args.config)
    main(config)

主要功能

  • 加载数据: 使用 get_loader 函数从指定路径加载训练和测试数据。
  • 定义模型: 根据配置文件中指定的模型类型(如 alexnet, lenet, resnet),实例化相应的模型。
  • 训练模型: 调用模型的 train 方法进行模型训练。

3. 项目的配置文件介绍

config.py

config.py 是项目的配置文件,包含所有必要的配置参数,如数据路径、模型类型、训练参数等。以下是配置文件的主要内容:

class Config:
    def __init__(self, config_path):
        self.train_data_path = 'data/processed/train'
        self.test_data_path = 'data/processed/test'
        self.batch_size = 64
        self.num_epochs = 20
        self.learning_rate = 0.001
        self.model = 'alexnet'
        self.num_classes = 10

        # 从配置文件加载参数(如果有)
        self.load_config(config_path)

    def load_config(self, config_path):
        # 实现从文件加载配置
热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
611
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
383
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0