MNIST-SVHN 迁移学习项目教程
2024-08-20 19:24:53作者:傅爽业Veleda
1. 项目的目录结构及介绍
mnist-svhn-transfer/
├── data/
│ ├── mnist/
│ ├── svhn/
│ └── processed/
├── models/
│ ├── alexnet.py
│ ├── lenet.py
│ └── resnet.py
├── utils/
│ ├── dataset.py
│ ├── logger.py
│ └── utils.py
├── config.py
├── main.py
├── README.md
└── requirements.txt
目录结构介绍
data/: 存储MNIST和SVHN数据集的原始和处理后的文件。mnist/: MNIST数据集文件。svhn/: SVHN数据集文件。processed/: 处理后的数据文件。
models/: 包含不同模型的实现文件。alexnet.py: AlexNet模型实现。lenet.py: LeNet模型实现。resnet.py: ResNet模型实现。
utils/: 包含辅助功能的实现文件。dataset.py: 数据集处理和加载功能。logger.py: 日志记录功能。utils.py: 其他辅助功能。
config.py: 项目配置文件。main.py: 项目启动文件。README.md: 项目说明文档。requirements.txt: 项目依赖包列表。
2. 项目的启动文件介绍
main.py
main.py 是项目的启动文件,负责初始化配置、加载数据、定义模型、训练和评估模型。以下是主要功能模块的介绍:
import argparse
from config import Config
from utils.dataset import get_loader
from models.alexnet import AlexNet
from models.lenet import LeNet
from models.resnet import ResNet
def main(config):
# 加载数据
train_loader = get_loader(config.train_data_path, config.batch_size)
test_loader = get_loader(config.test_data_path, config.batch_size)
# 定义模型
if config.model == 'alexnet':
model = AlexNet(config.num_classes)
elif config.model == 'lenet':
model = LeNet(config.num_classes)
elif config.model == 'resnet':
model = ResNet(config.num_classes)
# 训练模型
model.train(train_loader, test_loader, config.num_epochs, config.learning_rate)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='config.py', help='配置文件路径')
args = parser.parse_args()
config = Config(args.config)
main(config)
主要功能
- 加载数据: 使用
get_loader函数从指定路径加载训练和测试数据。 - 定义模型: 根据配置文件中指定的模型类型(如
alexnet,lenet,resnet),实例化相应的模型。 - 训练模型: 调用模型的
train方法进行模型训练。
3. 项目的配置文件介绍
config.py
config.py 是项目的配置文件,包含所有必要的配置参数,如数据路径、模型类型、训练参数等。以下是配置文件的主要内容:
class Config:
def __init__(self, config_path):
self.train_data_path = 'data/processed/train'
self.test_data_path = 'data/processed/test'
self.batch_size = 64
self.num_epochs = 20
self.learning_rate = 0.001
self.model = 'alexnet'
self.num_classes = 10
# 从配置文件加载参数(如果有)
self.load_config(config_path)
def load_config(self, config_path):
# 实现从文件加载配置
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
480
3.57 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
731
176
React Native鸿蒙化仓库
JavaScript
289
341
Ascend Extension for PyTorch
Python
291
322
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
仓颉编程语言运行时与标准库。
Cangjie
149
885
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
452