abess:快速最佳子集选择库
2025-04-19 12:26:53作者:侯霆垣
1. 项目介绍
abess(Adaptive BEst Subset Selection)是一个高效的最佳子集选择库,适用于Python和R语言。该项目旨在解决一般性的最佳子集选择问题,即找到一小部分预测因子,使得由此得到的模型预计具有最高的准确度。最佳子集选择在科学研究和实际应用中显示出巨大的价值,例如在医学研究中,根据少数几个重要基因的表达水平来判断患者的健康状况。
abess库实现了一个通用的算法框架,以极快的速度找到最优解。目前,该框架支持线性回归、二分类或多分类、计数响应建模、截尾响应建模、多响应建模(多任务学习)等场景下的最佳子集选择。它还支持最佳子集选择的变体,如分组最佳子集选择、干扰惩罚回归等。特别地,线性回归的(分组)最佳子集选择的时间复杂度是可证明的多项式级别的。
2. 项目快速启动
Python环境
首先,您需要安装Python包,可以使用以下命令:
pip install abess
或者通过conda:
conda install abess
然后,以下是一个线性回归的最佳子集选择的简单示例:
from abess.linear import LinearRegression
from abess.datasets import make_glm_data
# 生成模拟数据
sim_dat = make_glm_data(n=300, p=1000, k=10, family="gaussian")
# 创建模型
model = LinearRegression()
# 拟合模型
model.fit(sim_dat.x, sim_dat.y)
R环境
在R环境中,您可以使用以下命令安装R包:
install.packages("abess")
以下是一个线性回归的最佳子集选择的简单示例:
library(abess)
# 生成模拟数据
sim_dat <- generate.data(n=300, p=1000)
# 执行最佳子集选择
abess(x=sim_dat[["x"]], y=sim_dat[["y"]])
3. 应用案例和最佳实践
在abess库的官方文档中,提供了丰富的案例和最佳实践,涵盖不同的统计模型和应用场景。例如,在处理分类问题时,如何选择合适的模型参数以及如何解读结果。
4. 典型生态项目
abess作为一个开源项目,其生态系统包括与scikit-learn等流行机器学习库的集成,以及通过CMake等工具提高的可扩展性。此外,abess的社区持续发展,不断有新的特性和改进被合并到项目中,使其在最佳子集选择领域保持领先地位。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105