abess:快速最佳子集选择库
2025-04-19 18:15:06作者:侯霆垣
1. 项目介绍
abess(Adaptive BEst Subset Selection)是一个高效的最佳子集选择库,适用于Python和R语言。该项目旨在解决一般性的最佳子集选择问题,即找到一小部分预测因子,使得由此得到的模型预计具有最高的准确度。最佳子集选择在科学研究和实际应用中显示出巨大的价值,例如在医学研究中,根据少数几个重要基因的表达水平来判断患者的健康状况。
abess库实现了一个通用的算法框架,以极快的速度找到最优解。目前,该框架支持线性回归、二分类或多分类、计数响应建模、截尾响应建模、多响应建模(多任务学习)等场景下的最佳子集选择。它还支持最佳子集选择的变体,如分组最佳子集选择、干扰惩罚回归等。特别地,线性回归的(分组)最佳子集选择的时间复杂度是可证明的多项式级别的。
2. 项目快速启动
Python环境
首先,您需要安装Python包,可以使用以下命令:
pip install abess
或者通过conda:
conda install abess
然后,以下是一个线性回归的最佳子集选择的简单示例:
from abess.linear import LinearRegression
from abess.datasets import make_glm_data
# 生成模拟数据
sim_dat = make_glm_data(n=300, p=1000, k=10, family="gaussian")
# 创建模型
model = LinearRegression()
# 拟合模型
model.fit(sim_dat.x, sim_dat.y)
R环境
在R环境中,您可以使用以下命令安装R包:
install.packages("abess")
以下是一个线性回归的最佳子集选择的简单示例:
library(abess)
# 生成模拟数据
sim_dat <- generate.data(n=300, p=1000)
# 执行最佳子集选择
abess(x=sim_dat[["x"]], y=sim_dat[["y"]])
3. 应用案例和最佳实践
在abess库的官方文档中,提供了丰富的案例和最佳实践,涵盖不同的统计模型和应用场景。例如,在处理分类问题时,如何选择合适的模型参数以及如何解读结果。
4. 典型生态项目
abess作为一个开源项目,其生态系统包括与scikit-learn等流行机器学习库的集成,以及通过CMake等工具提高的可扩展性。此外,abess的社区持续发展,不断有新的特性和改进被合并到项目中,使其在最佳子集选择领域保持领先地位。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881