Subspace Diffusion 开源项目教程
2024-09-21 00:06:55作者:沈韬淼Beryl
项目介绍
Subspace Diffusion 是一个基于 PyTorch 的开源项目,旨在通过子空间扩散生成模型来加速和改进基于分数的生成模型。该项目由 Bowen Jing、Gabriele Corso、Renato Berlinghieri 和 Tommi Jaakkola 共同开发。Subspace Diffusion 通过将高维数据分布的扩散过程限制在低维子空间中,显著提高了样本质量和推理速度。
项目快速启动
环境准备
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装项目依赖:
pip install -r requirements.txt
pip install scipy jax==0.2.8 jaxlib==0.1.60
训练模型
以下是训练一个子空间模型的示例代码:
python main.py --config configs/ve/cifar10_ncsnpp_continuous.py --mode train \
--config_data image_size 16 --workdir [WORKDIR]
生成样本
使用以下命令生成样本:
python subspace_sample.py --config configs/ve/cifar10_ncsnpp_continuous.py --dataset cifar --time 0.5 --subspace 16 --langevin_snr 0.22 \
--eval_folder [DIR] --save_name [NAME] --ckpt_subspace [PATH] --ckpt_full [PATH]
应用案例和最佳实践
应用案例
Subspace Diffusion 可以应用于多种生成任务,如图像生成、文本生成等。以下是一个图像生成的应用案例:
python subspace_sample.py --config configs/ve/cifar10_ncsnpp_continuous.py --dataset cifar --time 0.5 --subspace 16 --langevin_snr 0.22 \
--eval_folder [DIR] --save_name [NAME] --ckpt_subspace [PATH] --ckpt_full [PATH]
最佳实践
- 选择合适的子空间维度:根据数据集的复杂度和计算资源,选择合适的子空间维度。
- 调整 Langevin SNR:根据生成样本的质量,调整 Langevin SNR 参数。
- 使用预训练模型:可以下载预训练模型来加速训练和生成过程。
典型生态项目
相关项目
- Score-based Models:基于分数的生成模型,是 Subspace Diffusion 的基础。
- PyTorch:Subspace Diffusion 使用 PyTorch 作为深度学习框架。
- Jax:用于加速计算的 Jax 库。
集成项目
- Hugging Face Transformers:可以集成 Hugging Face 的 Transformers 库,用于文本生成任务。
- DALL-E:OpenAI 的 DALL-E 项目,可以与 Subspace Diffusion 结合,用于图像生成任务。
通过以上步骤,你可以快速上手 Subspace Diffusion 项目,并将其应用于各种生成任务中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248