Subspace Diffusion 开源项目教程
2024-09-21 00:06:55作者:沈韬淼Beryl
项目介绍
Subspace Diffusion 是一个基于 PyTorch 的开源项目,旨在通过子空间扩散生成模型来加速和改进基于分数的生成模型。该项目由 Bowen Jing、Gabriele Corso、Renato Berlinghieri 和 Tommi Jaakkola 共同开发。Subspace Diffusion 通过将高维数据分布的扩散过程限制在低维子空间中,显著提高了样本质量和推理速度。
项目快速启动
环境准备
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装项目依赖:
pip install -r requirements.txt
pip install scipy jax==0.2.8 jaxlib==0.1.60
训练模型
以下是训练一个子空间模型的示例代码:
python main.py --config configs/ve/cifar10_ncsnpp_continuous.py --mode train \
--config_data image_size 16 --workdir [WORKDIR]
生成样本
使用以下命令生成样本:
python subspace_sample.py --config configs/ve/cifar10_ncsnpp_continuous.py --dataset cifar --time 0.5 --subspace 16 --langevin_snr 0.22 \
--eval_folder [DIR] --save_name [NAME] --ckpt_subspace [PATH] --ckpt_full [PATH]
应用案例和最佳实践
应用案例
Subspace Diffusion 可以应用于多种生成任务,如图像生成、文本生成等。以下是一个图像生成的应用案例:
python subspace_sample.py --config configs/ve/cifar10_ncsnpp_continuous.py --dataset cifar --time 0.5 --subspace 16 --langevin_snr 0.22 \
--eval_folder [DIR] --save_name [NAME] --ckpt_subspace [PATH] --ckpt_full [PATH]
最佳实践
- 选择合适的子空间维度:根据数据集的复杂度和计算资源,选择合适的子空间维度。
- 调整 Langevin SNR:根据生成样本的质量,调整 Langevin SNR 参数。
- 使用预训练模型:可以下载预训练模型来加速训练和生成过程。
典型生态项目
相关项目
- Score-based Models:基于分数的生成模型,是 Subspace Diffusion 的基础。
- PyTorch:Subspace Diffusion 使用 PyTorch 作为深度学习框架。
- Jax:用于加速计算的 Jax 库。
集成项目
- Hugging Face Transformers:可以集成 Hugging Face 的 Transformers 库,用于文本生成任务。
- DALL-E:OpenAI 的 DALL-E 项目,可以与 Subspace Diffusion 结合,用于图像生成任务。
通过以上步骤,你可以快速上手 Subspace Diffusion 项目,并将其应用于各种生成任务中。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
93
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
724
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19