Synology DSM 7 中的 Fristate 集成指南:启用Google Coral USB加速器
项目介绍
本项目提供了一个Dockerfile及docker-compose.yml文件,专为Synology DiskStation Manager (DSM) 7设计,旨在使用户能够在容器中启用并利用Google Coral USB硬件加速器来提升Frigate——一个高效的NVR(Network Video Recorder)解决方案——的性能。该集成基于Frigate的官方上游镜像,但经过定制编译以去除udev支持,确保与Synology环境的良好兼容性,尤其是针对配备了Coral USB TPU的情况。
项目快速启动
环境准备
确保您的Synology NAS运行DSM 7.2及以上版本,并安装了必要的USB驱动和工具:
- 安装额外套件:通过SynoCommunity存储包安装“SynoKernel USB Serial drivers”和“SynoCLI Kernel Tools”。这些可能已预先安装,但仍需确认。
容器部署步骤
-
克隆仓库:在你的开发环境中,如果需要本地修改配置,可以先从GitHub上克隆该项目。
git clone https://github.com/weltenwort/frigate-synology-dsm7.git
-
配置:编辑
docker-compose.yml
文件,根据你的需求调整路径和环境变量。例如,配置媒体存储路径和配置文件路径。# 示例:修改配置文件路径 volumes: - /path/to/your/media:/recordings - ./config:/etc/frigate
-
启动容器:使用以下命令在Synology的终端或通过SSH启动Frigate容器。
cd frigate-synology-dsm7 sudo docker-compose up --detach --force-recreate
确保你的Coral USB设备已正确连接到NAS,并且系统已识别它。
应用案例和最佳实践
在 Surveillance Station 或类似监控界面中,将Frigate作为高级视频分析工具集成,利用其运动检测和人脸识别功能增强监控效率。优化配置文件(config.yml
)以平衡处理速度与准确性,如适当设置录制质量、运动阈值和目标模型大小,确保最佳性能与硬盘空间的合理使用。
典型生态项目
结合Synology NAS的强大存储能力与Frigate的智能视频分析,可以在智能家居场景中构建高度自动化的监控系统。例如,可以与其他IoT设备集成,实现异常活动警报通过邮件或手机推送,或者与家庭自动化系统联动,比如自动开启照明或触发安全响应。
以上步骤应帮助您成功地在Synology DSM 7环境下部署Frigate,并利用Google Coral USB TPU进行高效视频处理。记住,定期检查项目仓库更新,以获取最新的改进和特性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









