Synology DSM 7 中的 Fristate 集成指南:启用Google Coral USB加速器
项目介绍
本项目提供了一个Dockerfile及docker-compose.yml文件,专为Synology DiskStation Manager (DSM) 7设计,旨在使用户能够在容器中启用并利用Google Coral USB硬件加速器来提升Frigate——一个高效的NVR(Network Video Recorder)解决方案——的性能。该集成基于Frigate的官方上游镜像,但经过定制编译以去除udev支持,确保与Synology环境的良好兼容性,尤其是针对配备了Coral USB TPU的情况。
项目快速启动
环境准备
确保您的Synology NAS运行DSM 7.2及以上版本,并安装了必要的USB驱动和工具:
- 安装额外套件:通过SynoCommunity存储包安装“SynoKernel USB Serial drivers”和“SynoCLI Kernel Tools”。这些可能已预先安装,但仍需确认。
容器部署步骤
-
克隆仓库:在你的开发环境中,如果需要本地修改配置,可以先从GitHub上克隆该项目。
git clone https://github.com/weltenwort/frigate-synology-dsm7.git -
配置:编辑
docker-compose.yml文件,根据你的需求调整路径和环境变量。例如,配置媒体存储路径和配置文件路径。# 示例:修改配置文件路径 volumes: - /path/to/your/media:/recordings - ./config:/etc/frigate -
启动容器:使用以下命令在Synology的终端或通过SSH启动Frigate容器。
cd frigate-synology-dsm7 sudo docker-compose up --detach --force-recreate
确保你的Coral USB设备已正确连接到NAS,并且系统已识别它。
应用案例和最佳实践
在 Surveillance Station 或类似监控界面中,将Frigate作为高级视频分析工具集成,利用其运动检测和人脸识别功能增强监控效率。优化配置文件(config.yml)以平衡处理速度与准确性,如适当设置录制质量、运动阈值和目标模型大小,确保最佳性能与硬盘空间的合理使用。
典型生态项目
结合Synology NAS的强大存储能力与Frigate的智能视频分析,可以在智能家居场景中构建高度自动化的监控系统。例如,可以与其他IoT设备集成,实现异常活动警报通过邮件或手机推送,或者与家庭自动化系统联动,比如自动开启照明或触发安全响应。
以上步骤应帮助您成功地在Synology DSM 7环境下部署Frigate,并利用Google Coral USB TPU进行高效视频处理。记住,定期检查项目仓库更新,以获取最新的改进和特性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C073
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00