Wonderdog 技术文档
2024-12-20 16:01:19作者:咎岭娴Homer
1. 安装指南
要使用Wonderdog,您需要在项目中的pom.xml文件中声明对Wonderdog的依赖:
<project>
...
<dependencies>
<dependency>
<groupId>com.infochimps</groupId>
<artifactId>elasticsearch</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
...
</dependencies>
...
</project>
这样,在构建代码时,就会包含所需的Wonderdog InputFormat和OutputFormat类。
2. 项目的使用说明
Wonderdog提供了多种功能,包括:
- Java InputFormat和OutputFormat类,可用于Hadoop MapReduce任务。
- Wukong插件,使得InputFormat和OutputFormat类易于在Wukong中使用。
- Pig的Java函数,用于从ElasticSearch加载数据和存储数据。
- 一些与ElasticSearch交互的命令行工具。
Hadoop MapReduce
Wonderdog提供了可用于自定义Hadoop MapReduce任务的InputFormat和OutputFormat类:
com.infochimps.elasticsearch.ElasticSearchInputFormatcom.infochimps.elasticsearch.ElasticSearchOutputFormatcom.infochimps.elasticsearch.ElasticSearchStreamingInputFormatcom.infochimps.elasticsearch.ElasticSearchStreamingOutputFormat
这些类包括适用于旧mapred API的streaming版本和适用于新mapreduce API的非streaming版本。
Wukong
使用Wukong时,确保在项目的Gemfile中包含Wonderdog:
# in Gemfile
gem 'wonderdog', git: 'https://github.com/infochimps-labs/wonderdog'
在作业顶部要求Wonderdog:
# in my_elasticsearch_job.rb
require 'wukong'
require 'wonderdog'
Wukong.dataflow(:mapper) do
...
end
Wukong.dataflow(:reducer) do
...
end
如果使用Wukong部署包,可以在部署包的顶层创建一个初始化程序来要求Wonderdog:
# in config/initializers/plugins.rb
require 'wonderdog'
3. 项目API使用文档
以下是使用Wonderdog与ElasticSearch交互的一些示例。
写入ElasticSearch
以下示例将所有输出数据写入twitter索引的tweet类型:
$ wu hadoop my_job.rb --input=/some/hdfs/input/path --output=es://twitter/tweet
输出数据的格式和路由:
_id:如果存在,用作在ElasticSearch中创建记录的文档ID。_mapping:如果存在,用于指定文档的类型。_index:如果存在,用于指定文档的索引。
读取ElasticSearch
以下示例将从twitter索引的tweet类型中读取所有输入数据:
$ wu hadoop my_job.rb --input=es://twitter/tweet --output=/some/hdfs/output/path
可以使用--es_query选项提供ElasticSearch JSON查询,以自定义输入数据。
优化
在执行Hadoop作业之前,对ElasticSearch索引进行预处理可以提高性能。以下是一些优化措施:
- 将
index.number_of_replicas设置为0,以减少需要更新的分片数量。 - 将
index.refresh_interval设置为-1,以确保ElasticSearch不将资源用于搜索数据刷新。
4. 项目安装方式
除了在pom.xml中添加依赖外,使用Wonderdog还需要在Wukong项目中添加相应的gem依赖,并在作业中要求对应的库。
确保在Ruby项目的Gemfile中包含以下内容:
gem 'wonderdog', git: 'https://github.com/infochimps-labs/wonderdog'
然后,在作业脚本中要求所需的库:
require 'wukong'
require 'wonderdog'
这样,就可以开始使用Wonderdog提供的功能了。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1