Wonderdog 技术文档
2024-12-20 17:18:43作者:咎岭娴Homer
1. 安装指南
要使用Wonderdog,您需要在项目中的pom.xml
文件中声明对Wonderdog的依赖:
<project>
...
<dependencies>
<dependency>
<groupId>com.infochimps</groupId>
<artifactId>elasticsearch</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
...
</dependencies>
...
</project>
这样,在构建代码时,就会包含所需的Wonderdog InputFormat和OutputFormat类。
2. 项目的使用说明
Wonderdog提供了多种功能,包括:
- Java InputFormat和OutputFormat类,可用于Hadoop MapReduce任务。
- Wukong插件,使得InputFormat和OutputFormat类易于在Wukong中使用。
- Pig的Java函数,用于从ElasticSearch加载数据和存储数据。
- 一些与ElasticSearch交互的命令行工具。
Hadoop MapReduce
Wonderdog提供了可用于自定义Hadoop MapReduce任务的InputFormat和OutputFormat类:
com.infochimps.elasticsearch.ElasticSearchInputFormat
com.infochimps.elasticsearch.ElasticSearchOutputFormat
com.infochimps.elasticsearch.ElasticSearchStreamingInputFormat
com.infochimps.elasticsearch.ElasticSearchStreamingOutputFormat
这些类包括适用于旧mapred
API的streaming版本和适用于新mapreduce
API的非streaming版本。
Wukong
使用Wukong时,确保在项目的Gemfile
中包含Wonderdog:
# in Gemfile
gem 'wonderdog', git: 'https://github.com/infochimps-labs/wonderdog'
在作业顶部要求Wonderdog:
# in my_elasticsearch_job.rb
require 'wukong'
require 'wonderdog'
Wukong.dataflow(:mapper) do
...
end
Wukong.dataflow(:reducer) do
...
end
如果使用Wukong部署包,可以在部署包的顶层创建一个初始化程序来要求Wonderdog:
# in config/initializers/plugins.rb
require 'wonderdog'
3. 项目API使用文档
以下是使用Wonderdog与ElasticSearch交互的一些示例。
写入ElasticSearch
以下示例将所有输出数据写入twitter
索引的tweet
类型:
$ wu hadoop my_job.rb --input=/some/hdfs/input/path --output=es://twitter/tweet
输出数据的格式和路由:
_id
:如果存在,用作在ElasticSearch中创建记录的文档ID。_mapping
:如果存在,用于指定文档的类型。_index
:如果存在,用于指定文档的索引。
读取ElasticSearch
以下示例将从twitter
索引的tweet
类型中读取所有输入数据:
$ wu hadoop my_job.rb --input=es://twitter/tweet --output=/some/hdfs/output/path
可以使用--es_query
选项提供ElasticSearch JSON查询,以自定义输入数据。
优化
在执行Hadoop作业之前,对ElasticSearch索引进行预处理可以提高性能。以下是一些优化措施:
- 将
index.number_of_replicas
设置为0,以减少需要更新的分片数量。 - 将
index.refresh_interval
设置为-1,以确保ElasticSearch不将资源用于搜索数据刷新。
4. 项目安装方式
除了在pom.xml
中添加依赖外,使用Wonderdog还需要在Wukong项目中添加相应的gem依赖,并在作业中要求对应的库。
确保在Ruby项目的Gemfile
中包含以下内容:
gem 'wonderdog', git: 'https://github.com/infochimps-labs/wonderdog'
然后,在作业脚本中要求所需的库:
require 'wukong'
require 'wonderdog'
这样,就可以开始使用Wonderdog提供的功能了。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
165
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
408
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71

无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
14
1