Wonderdog 技术文档
2024-12-20 09:04:54作者:咎岭娴Homer
1. 安装指南
要使用Wonderdog,您需要在项目中的pom.xml文件中声明对Wonderdog的依赖:
<project>
...
<dependencies>
<dependency>
<groupId>com.infochimps</groupId>
<artifactId>elasticsearch</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
...
</dependencies>
...
</project>
这样,在构建代码时,就会包含所需的Wonderdog InputFormat和OutputFormat类。
2. 项目的使用说明
Wonderdog提供了多种功能,包括:
- Java InputFormat和OutputFormat类,可用于Hadoop MapReduce任务。
- Wukong插件,使得InputFormat和OutputFormat类易于在Wukong中使用。
- Pig的Java函数,用于从ElasticSearch加载数据和存储数据。
- 一些与ElasticSearch交互的命令行工具。
Hadoop MapReduce
Wonderdog提供了可用于自定义Hadoop MapReduce任务的InputFormat和OutputFormat类:
com.infochimps.elasticsearch.ElasticSearchInputFormatcom.infochimps.elasticsearch.ElasticSearchOutputFormatcom.infochimps.elasticsearch.ElasticSearchStreamingInputFormatcom.infochimps.elasticsearch.ElasticSearchStreamingOutputFormat
这些类包括适用于旧mapred API的streaming版本和适用于新mapreduce API的非streaming版本。
Wukong
使用Wukong时,确保在项目的Gemfile中包含Wonderdog:
# in Gemfile
gem 'wonderdog', git: 'https://github.com/infochimps-labs/wonderdog'
在作业顶部要求Wonderdog:
# in my_elasticsearch_job.rb
require 'wukong'
require 'wonderdog'
Wukong.dataflow(:mapper) do
...
end
Wukong.dataflow(:reducer) do
...
end
如果使用Wukong部署包,可以在部署包的顶层创建一个初始化程序来要求Wonderdog:
# in config/initializers/plugins.rb
require 'wonderdog'
3. 项目API使用文档
以下是使用Wonderdog与ElasticSearch交互的一些示例。
写入ElasticSearch
以下示例将所有输出数据写入twitter索引的tweet类型:
$ wu hadoop my_job.rb --input=/some/hdfs/input/path --output=es://twitter/tweet
输出数据的格式和路由:
_id:如果存在,用作在ElasticSearch中创建记录的文档ID。_mapping:如果存在,用于指定文档的类型。_index:如果存在,用于指定文档的索引。
读取ElasticSearch
以下示例将从twitter索引的tweet类型中读取所有输入数据:
$ wu hadoop my_job.rb --input=es://twitter/tweet --output=/some/hdfs/output/path
可以使用--es_query选项提供ElasticSearch JSON查询,以自定义输入数据。
优化
在执行Hadoop作业之前,对ElasticSearch索引进行预处理可以提高性能。以下是一些优化措施:
- 将
index.number_of_replicas设置为0,以减少需要更新的分片数量。 - 将
index.refresh_interval设置为-1,以确保ElasticSearch不将资源用于搜索数据刷新。
4. 项目安装方式
除了在pom.xml中添加依赖外,使用Wonderdog还需要在Wukong项目中添加相应的gem依赖,并在作业中要求对应的库。
确保在Ruby项目的Gemfile中包含以下内容:
gem 'wonderdog', git: 'https://github.com/infochimps-labs/wonderdog'
然后,在作业脚本中要求所需的库:
require 'wukong'
require 'wonderdog'
这样,就可以开始使用Wonderdog提供的功能了。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
开源电子设计自动化利器:KiCad EDA全方位使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
265
2.53 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
98
126
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
150
暂无简介
Dart
555
124
React Native鸿蒙化仓库
JavaScript
221
301
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
602
仓颉编程语言测试用例。
Cangjie
34
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.83 K