Feature Engine项目中DataFrame碎片化问题的分析与解决
2025-07-05 07:02:49作者:明树来
背景介绍
在使用Feature Engine库的DecisionTreeFeatures功能时,用户可能会遇到一个关于DataFrame碎片化的性能警告。这个问题源于Pandas DataFrame在多次插入列时的内部机制,虽然不会影响最终的计算结果,但会导致性能下降。
问题本质
当我们在Pandas中反复使用insert方法或直接通过索引赋值方式添加新列时,DataFrame会变得"碎片化"。这意味着DataFrame的内存布局不再连续,而是分散在不同的内存块中。这种碎片化状态会导致:
- 内存使用效率降低
- 后续操作速度变慢
- 可能触发内存重新分配
技术细节
在Feature Engine的DecisionTreeFeatures实现中,当前代码是通过循环方式逐个添加新特征的列到原始DataFrame中。这种实现方式虽然逻辑简单直接,但正是导致DataFrame碎片化的主要原因。
解决方案比较
针对这个问题,社区讨论了几种可能的解决方案:
-
直接索引赋值优化:将
X[feature] = preds改为X.loc[:, feature] = preds,这种方法简单但改善有限 -
批量合并方案:
- 首先收集所有需要添加的特征到一个字典中
- 最后统一转换为DataFrame并与原始数据合并
- 这种方法能显著减少内存碎片
-
数据类型强制统一:强制指定DataFrame的数据类型,确保新增列与原有列类型一致,但实现较为复杂
最佳实践建议
对于Feature Engine用户,目前可以暂时忽略这个警告,因为它不影响计算结果。但从性能优化的角度,建议:
- 对于小型数据集,影响可以忽略不计
- 对于大型数据集,可以考虑预先分配好DataFrame空间
- 等待Feature Engine官方发布优化后的版本
未来优化方向
Feature Engine开发团队计划在未来版本中采用更高效的DataFrame操作方式,可能的改进包括:
- 使用pd.concat进行批量合并
- 优化内存分配策略
- 提供更灵活的特征添加接口
这个问题的解决将提升DecisionTreeFeatures在大规模数据集上的处理效率,为用户带来更好的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322