Feature Engine项目中DataFrame碎片化问题的分析与解决
2025-07-05 12:44:33作者:明树来
背景介绍
在使用Feature Engine库的DecisionTreeFeatures功能时,用户可能会遇到一个关于DataFrame碎片化的性能警告。这个问题源于Pandas DataFrame在多次插入列时的内部机制,虽然不会影响最终的计算结果,但会导致性能下降。
问题本质
当我们在Pandas中反复使用insert方法或直接通过索引赋值方式添加新列时,DataFrame会变得"碎片化"。这意味着DataFrame的内存布局不再连续,而是分散在不同的内存块中。这种碎片化状态会导致:
- 内存使用效率降低
- 后续操作速度变慢
- 可能触发内存重新分配
技术细节
在Feature Engine的DecisionTreeFeatures实现中,当前代码是通过循环方式逐个添加新特征的列到原始DataFrame中。这种实现方式虽然逻辑简单直接,但正是导致DataFrame碎片化的主要原因。
解决方案比较
针对这个问题,社区讨论了几种可能的解决方案:
-
直接索引赋值优化:将
X[feature] = preds改为X.loc[:, feature] = preds,这种方法简单但改善有限 -
批量合并方案:
- 首先收集所有需要添加的特征到一个字典中
- 最后统一转换为DataFrame并与原始数据合并
- 这种方法能显著减少内存碎片
-
数据类型强制统一:强制指定DataFrame的数据类型,确保新增列与原有列类型一致,但实现较为复杂
最佳实践建议
对于Feature Engine用户,目前可以暂时忽略这个警告,因为它不影响计算结果。但从性能优化的角度,建议:
- 对于小型数据集,影响可以忽略不计
- 对于大型数据集,可以考虑预先分配好DataFrame空间
- 等待Feature Engine官方发布优化后的版本
未来优化方向
Feature Engine开发团队计划在未来版本中采用更高效的DataFrame操作方式,可能的改进包括:
- 使用pd.concat进行批量合并
- 优化内存分配策略
- 提供更灵活的特征添加接口
这个问题的解决将提升DecisionTreeFeatures在大规模数据集上的处理效率,为用户带来更好的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1