Darts项目中DataFrame性能优化:解决高度碎片化警告
2025-05-27 01:16:34作者:秋阔奎Evelyn
问题背景
在Darts项目的时间序列生成工具测试中,出现了一个关于Pandas DataFrame性能的警告。当在timeseries_generation.py文件中执行values_df[i] = 0操作时,系统会抛出"DataFrame is highly fragmented"的性能警告。这个警告表明DataFrame存在严重的碎片化问题,通常是由于多次调用frame.insert操作导致的。
技术原理分析
DataFrame碎片化问题本质上是内存管理问题。当通过循环或多次单独操作向DataFrame添加列时,Pandas需要在内存中不断重新分配空间,这会导致:
- 内存使用效率低下
- 操作速度显著下降
- 可能引发内存碎片
Pandas官方文档明确指出,这种操作模式性能较差,建议使用更高效的方法如pd.concat(axis=1)一次性合并所有列。
解决方案对比
项目贡献者提出了两种解决方案并进行性能对比:
原有方法
df1[ind] = 0
优化方法
dict_of_cols = {}
list_0 = [0] * len(df)
dict_0 = {n: list_0 for n in ind}
df = pd.concat([df, pd.DataFrame(dict_0)], axis=1).sort_index(axis=1)
性能测试结果显示,优化后的字典方法比原有方法快约17.6倍。这种性能提升在大规模数据处理时尤为明显。
实现细节
优化方案的核心思想是:
- 预先构建包含所有新列数据的字典
- 一次性将字典转换为DataFrame
- 使用concat方法合并原有DataFrame和新列
- 最后按索引排序确保列顺序正确
这种方法避免了循环添加列导致的多次内存分配,显著提高了性能。
实际应用建议
在处理时间序列数据时,尤其是需要动态添加多列的场景,开发者应当:
- 尽量避免循环添加列的操作
- 优先考虑批量构建数据后一次性合并
- 对于固定值填充,可以使用广播机制
- 必要时使用
frame.copy()获取去碎片化的新DataFrame
总结
Darts项目通过这次优化,不仅消除了性能警告,还显著提升了时间序列生成工具的执行效率。这个案例展示了在数据处理过程中,合理的内存管理策略对性能的重要影响。对于类似的时间序列处理项目,这种优化思路具有很好的参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217