LoRA-Scripts项目训练SDXL模型时出现NaN问题的解决方案
2025-06-08 04:00:39作者:伍霜盼Ellen
在LoRA-Scripts项目中训练SDXL模型时,部分用户遇到了训练损失值(loss)持续显示为NaN的问题。这种情况通常表明训练过程中出现了数值不稳定的情况,需要从多个方面进行排查和调整。
问题现象分析
当训练过程中出现NaN值时,通常意味着模型在计算梯度或更新参数时出现了数值溢出或下溢。对于SDXL这类大模型训练,这种情况尤为常见,主要原因可能包括:
- 学习率设置不当
- 混合精度训练配置问题
- VAE模块的数值稳定性问题
- 优化器选择不合适
解决方案
1. 优化器调整
原配置中使用了AdaFactor优化器,虽然这种优化器对内存友好,但在某些情况下可能导致数值不稳定。可以尝试以下调整:
- 换用AdamW优化器
- 降低学习率至1e-6或更低
- 增加梯度裁剪(gradient clipping)
2. 混合精度训练配置
混合精度训练是提高训练效率的重要手段,但配置不当会导致数值问题:
- 确保mixed_precision设置为"fp16"或"bf16"
- 避免同时启用full_fp16和full_bf16
- 对于VAE模块,可以尝试启用no_half_vae选项
3. VAE模块处理
VAE模块对数值精度较为敏感:
- 使用专门针对SDXL优化的VAE模型
- 在配置中明确指定VAE路径
- 考虑禁用VAE的缓存(cache_latents)以测试是否为问题源头
4. 其他训练参数调整
- 降低批次大小(train_batch_size)
- 尝试禁用xformers以排除兼容性问题
- 检查分辨率设置是否与模型预期匹配
- 验证数据集和标注是否正确
推荐配置调整
基于经验,以下配置调整可能有助于解决NaN问题:
optimizer_type = "AdamW8bit"
learning_rate = 1e-6
mixed_precision = "fp16"
no_half_vae = true
train_batch_size = 1
gradient_checkpointing = true
后续验证
调整配置后,建议:
- 先进行小规模训练测试(1-2个epoch)
- 监控loss曲线和显存使用情况
- 逐步调整参数至最优状态
通过系统性的参数调整和问题排查,大多数情况下可以解决SDXL模型训练中的NaN问题,使训练过程恢复正常。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328