LoRA-Scripts项目训练SDXL模型时出现NaN问题的解决方案
2025-06-08 10:59:23作者:伍霜盼Ellen
在LoRA-Scripts项目中训练SDXL模型时,部分用户遇到了训练损失值(loss)持续显示为NaN的问题。这种情况通常表明训练过程中出现了数值不稳定的情况,需要从多个方面进行排查和调整。
问题现象分析
当训练过程中出现NaN值时,通常意味着模型在计算梯度或更新参数时出现了数值溢出或下溢。对于SDXL这类大模型训练,这种情况尤为常见,主要原因可能包括:
- 学习率设置不当
- 混合精度训练配置问题
- VAE模块的数值稳定性问题
- 优化器选择不合适
解决方案
1. 优化器调整
原配置中使用了AdaFactor优化器,虽然这种优化器对内存友好,但在某些情况下可能导致数值不稳定。可以尝试以下调整:
- 换用AdamW优化器
- 降低学习率至1e-6或更低
- 增加梯度裁剪(gradient clipping)
2. 混合精度训练配置
混合精度训练是提高训练效率的重要手段,但配置不当会导致数值问题:
- 确保mixed_precision设置为"fp16"或"bf16"
- 避免同时启用full_fp16和full_bf16
- 对于VAE模块,可以尝试启用no_half_vae选项
3. VAE模块处理
VAE模块对数值精度较为敏感:
- 使用专门针对SDXL优化的VAE模型
- 在配置中明确指定VAE路径
- 考虑禁用VAE的缓存(cache_latents)以测试是否为问题源头
4. 其他训练参数调整
- 降低批次大小(train_batch_size)
- 尝试禁用xformers以排除兼容性问题
- 检查分辨率设置是否与模型预期匹配
- 验证数据集和标注是否正确
推荐配置调整
基于经验,以下配置调整可能有助于解决NaN问题:
optimizer_type = "AdamW8bit"
learning_rate = 1e-6
mixed_precision = "fp16"
no_half_vae = true
train_batch_size = 1
gradient_checkpointing = true
后续验证
调整配置后,建议:
- 先进行小规模训练测试(1-2个epoch)
- 监控loss曲线和显存使用情况
- 逐步调整参数至最优状态
通过系统性的参数调整和问题排查,大多数情况下可以解决SDXL模型训练中的NaN问题,使训练过程恢复正常。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1