LoRA-Scripts项目中SDXL训练出现NaN问题的分析与解决
2025-06-08 21:02:57作者:凤尚柏Louis
问题背景
在使用LoRA-Scripts项目进行SDXL模型训练时,部分用户遇到了"NaN detected in latents"的错误提示,导致训练过程中断。该问题主要出现在项目版本6a168cc8edbf7cf84fa9f51e3b981ee3f1acba02之后,表现为在缓存潜在空间(latents)时检测到NaN(非数值)值。
问题现象
用户在训练SDXL模型时,控制台会抛出以下错误:
RuntimeError: NaN detected in latents: train/aki/5_girl/fengmian101.png
值得注意的是,该问题具有以下特点:
- 仅影响SDXL模型训练,SD1.5和Flux fp8模型不受影响
- 同一台机器、相同配置下,之前版本可以正常运行
- 问题出现后,即使重新启动训练也会持续存在
根本原因分析
经过用户测试和验证,该问题与VAE(变分自编码器)的半精度(FP16)计算有关。在SDXL模型中,当使用半精度VAE进行潜在空间编码时,某些图像数据可能会导致数值计算不稳定,产生NaN值。
解决方案
临时解决方案
- 启用no_half_vae选项:在配置文件中设置no_half_vae为true,强制VAE使用全精度(FP32)计算
- 先启用后禁用no_half_vae:有用户发现,先启用no_half_vae训练一次,然后即使再禁用该选项,问题也不再出现
长期建议
- 对于SDXL模型训练,建议默认启用no_half_vae选项
- 如果显存允许,可以考虑使用全精度训练以获得更好的稳定性
- 检查训练图像是否存在异常(如损坏、格式问题等)
技术细节
VAE在潜在扩散模型中负责将图像编码到潜在空间。当使用半精度计算时,某些数值运算可能会超出FP16的表示范围,导致NaN。SDXL模型由于其更大的参数量和更复杂的结构,对数值稳定性要求更高,因此更容易出现此类问题。
总结
该问题揭示了深度学习训练中精度选择的重要性。虽然半精度计算可以节省显存并提高训练速度,但在某些情况下可能导致数值不稳定。对于SDXL这类大型模型,适当牺牲一些性能换取稳定性往往是值得的。用户在实际训练中应根据硬件条件和模型特性,合理配置精度参数。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895