LoRA-Scripts项目中SDXL训练出现NaN问题的分析与解决
2025-06-08 21:02:57作者:凤尚柏Louis
问题背景
在使用LoRA-Scripts项目进行SDXL模型训练时,部分用户遇到了"NaN detected in latents"的错误提示,导致训练过程中断。该问题主要出现在项目版本6a168cc8edbf7cf84fa9f51e3b981ee3f1acba02之后,表现为在缓存潜在空间(latents)时检测到NaN(非数值)值。
问题现象
用户在训练SDXL模型时,控制台会抛出以下错误:
RuntimeError: NaN detected in latents: train/aki/5_girl/fengmian101.png
值得注意的是,该问题具有以下特点:
- 仅影响SDXL模型训练,SD1.5和Flux fp8模型不受影响
- 同一台机器、相同配置下,之前版本可以正常运行
- 问题出现后,即使重新启动训练也会持续存在
根本原因分析
经过用户测试和验证,该问题与VAE(变分自编码器)的半精度(FP16)计算有关。在SDXL模型中,当使用半精度VAE进行潜在空间编码时,某些图像数据可能会导致数值计算不稳定,产生NaN值。
解决方案
临时解决方案
- 启用no_half_vae选项:在配置文件中设置no_half_vae为true,强制VAE使用全精度(FP32)计算
- 先启用后禁用no_half_vae:有用户发现,先启用no_half_vae训练一次,然后即使再禁用该选项,问题也不再出现
长期建议
- 对于SDXL模型训练,建议默认启用no_half_vae选项
- 如果显存允许,可以考虑使用全精度训练以获得更好的稳定性
- 检查训练图像是否存在异常(如损坏、格式问题等)
技术细节
VAE在潜在扩散模型中负责将图像编码到潜在空间。当使用半精度计算时,某些数值运算可能会超出FP16的表示范围,导致NaN。SDXL模型由于其更大的参数量和更复杂的结构,对数值稳定性要求更高,因此更容易出现此类问题。
总结
该问题揭示了深度学习训练中精度选择的重要性。虽然半精度计算可以节省显存并提高训练速度,但在某些情况下可能导致数值不稳定。对于SDXL这类大型模型,适当牺牲一些性能换取稳定性往往是值得的。用户在实际训练中应根据硬件条件和模型特性,合理配置精度参数。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137