CogVideo项目中的I2V扩散模型全参数微调内存优化实践
2025-05-21 23:21:42作者:虞亚竹Luna
背景介绍
在CogVideo项目的实际应用中,研究人员经常需要对图像到视频(I2V)扩散模型进行全参数微调。然而,当尝试对模型的所有注意力层(attn1)而不仅仅是LoRA层进行微调时,即使在配备80GB显存的A100显卡上,也会遇到内存不足(OOM)的问题。这一现象揭示了当前视频生成模型训练过程中的显存瓶颈。
问题分析
通过社区讨论和技术验证,我们确定了导致OOM的几个关键因素:
- VAE和文本编码器的内存占用:在线提取VAE和文本编码器特征会持续占用大量显存
- 梯度计算需求:全参数微调相比LoRA微调需要保存更多中间变量用于梯度计算
- 批处理大小限制:由于显存限制,批处理大小被迫设置为1,降低了训练效率
解决方案与实践经验
数据预处理优化
最有效的解决方案是预先处理数据,将VAE和文本编码器的特征提取工作离线完成。这种方法可以:
- 在训练前释放VAE和T5模型占用的显存
- 避免训练过程中重复计算编码特征
- 显著减少训练时的显存占用
训练技术优化
对于必须进行在线特征提取的场景,可以采用以下技术组合:
- 梯度检查点(Gradient Checkpointing):通过牺牲部分计算时间换取显存节省
- 分布式数据并行(DDP)/DeepSpeed:利用多GPU并行训练分担显存压力
- 低比特优化器:使用特殊设计的优化器减少参数更新时的内存消耗
- CPU卸载技术:将部分计算临时转移到主机内存
模型结构调整
在极端情况下,可以考虑临时调整模型结构:
- 降低空间分辨率(但可能影响生成质量)
- 缩短时间序列长度(适用于视频预测任务)
- 选择性冻结部分层(在效果和内存间取得平衡)
技术挑战与注意事项
在实现上述优化时,开发者需要注意:
- 梯度检查点与DDP配合使用时可能出现的变量就绪错误
- 不同优化技术间的兼容性问题
- 训练速度与显存占用的权衡取舍
- 混合精度训练(bfloat16)的有效利用
未来发展方向
根据项目维护者的规划,未来将专门建立独立的代码库来处理微调任务,主要优化方向包括:
- 更高效的内存管理策略
- 自动化优化技术选择
- 批处理大小动态调整
- 端到端的训练流程优化
总结
CogVideo项目的I2V扩散模型全参数微调面临显著的显存挑战,但通过数据预处理、训练技术优化和模型结构调整的组合策略,可以有效解决OOM问题。随着专用优化工具的发布和持续改进,视频生成模型的微调将变得更加高效和易于实施。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
Ascend Extension for PyTorch
Python
264
299
暂无简介
Dart
710
170
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
181
67
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
React Native鸿蒙化仓库
JavaScript
284
332
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
429
130