CogVideo项目I2V模型微调后生成视频异常问题分析
2025-05-21 14:26:34作者:凤尚柏Louis
问题现象描述
在CogVideo项目的实际应用中,研究人员发现对Image-to-Video(I2V)模型进行微调后,即使设置学习率为零(理论上不应改变模型参数),生成的视频质量也会出现显著下降。具体表现为:
- 微调后的模型生成的视频几乎全是噪声,仅在最初几帧能勉强辨认出参考图像的一些模式特征
- 使用完全相同的推理代码和配置文件,原始I2V模型却能正常工作
- 该问题不仅出现在全参数微调场景,在使用LoRA等参数高效微调方法时也同样存在
问题根源分析
经过技术团队调查,这个问题可能涉及以下几个技术环节:
-
模型保存/加载机制异常:微调过程中模型参数的保存格式或方式可能存在兼容性问题,导致模型权重虽然数值上未改变,但在加载时发生了意外的转换或损失
-
模型架构适配问题:I2V模型作为视频生成模型,其架构可能对参数初始化或微小变化特别敏感,微调过程可能破坏了模型内部的关键平衡
-
训练框架差异:原始模型训练使用的框架与微调时使用的框架(如SAT)可能存在某些不兼容的隐式假设
解决方案与建议
技术团队已经着手解决这一问题,并提供了以下建议:
-
使用新版训练框架:即将发布的CogVideoX-Factory将提供更稳定的训练支持,包含:
- 直接使用T5和VAE构建数据集的功能
- 支持transformers模型的diffusers版本训练
-
参数检查机制:在微调前后应对模型参数进行数值验证,确保微调过程确实如预期工作
-
渐进式微调策略:可以先尝试极小的学习率,观察模型行为变化,逐步调整训练策略
技术展望
视频生成模型的微调是一个复杂的过程,涉及时空特征的连贯性保持。这一问题也反映了生成模型领域的一些共性挑战:
- 模型对参数初始化的高度敏感性
- 训练与推理环境的一致性要求
- 大规模生成模型的稳定性控制
随着CogVideoX-Factory等更专业训练框架的推出,这些问题有望得到系统性的解决,推动视频生成技术在实际应用中的落地。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219