Complex Embeddings 开源项目教程
1. 项目介绍
本项目是基于论文《Complex Embeddings for Simple Link Prediction》和《Knowledge Graph Completion via Complex Tensor Factorization》的开源实现。项目通过复数嵌入技术,对知识图谱中的链接预测和完整性补全任务提供了一种新的解决方案。它包含了多种嵌入模型,如ComplEx、DistMult、TransE、RESCAL和CP模型,并在多个数据集上进行了验证。
2. 项目快速启动
首先,您需要克隆项目仓库:
git clone https://github.com/ttrouill/complex.git
接着,安装项目依赖:
pip install -r requirements.txt
项目兼容Python 2和3。为了运行实验,您需要解压数据集:
unzip datasets/fb15k.zip -d datasets/
unzip datasets/wn18.zip -d datasets/
然后,运行相应的Python脚本来执行实验。以下是运行FB15K数据集的ComplEx模型的示例:
python fb15k_run.py
如果要在GPU上运行以加快速度,可以在Python调用前添加Theano标志:
THEANO_FLAGS='device=gpu' python fb15k_run.py
3. 应用案例和最佳实践
3.1 保存模型生成的嵌入
如果您想保存模型生成的嵌入,只需取消注释fb15k_run.py和wn18_run.py中的最后几行代码,并确保导入了scipy.io模块。这将把ComplEx模型的嵌入保存为MATLAB的.mat格式。
3.2 在自己的数据上运行
要将自己的数据用于模型,需在datasets文件夹中创建一个子文件夹,并将数据分为三个文件:train.txt、valid.txt和test.txt。每行包含一个三元组,格式为:
subject_entity_id	relation_id	object_entity_id
之后,修改fb15k_run.py文件中的build_data函数调用,以使用您的数据集:
fb15kexp = build_data(name='your_dataset_folder_name', path=tools.cur_path + '/datasets/')
3.3 实现自己的模型
如果需要实现自己的模型,可以在models.py中定义新的类,继承Abstract_Model。需要重写get_init_params(self)和define_loss(self)方法来定义模型的参数初始化和损失函数。
4. 典型生态项目
目前,此项目是独立的,没有特别提到与其他开源项目的集成。但是,它可以使用Theano等深度学习库,并且可以与其他知识图谱处理工具结合使用,以构建更完整的应用生态系统。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00