首页
/ 探索未来的DIC技术:DICe,您的图像相关分析利器!

探索未来的DIC技术:DICe,您的图像相关分析利器!

2024-05-22 17:51:40作者:牧宁李

项目简介

DICe(发音为“die”,意为掷骰子)是一个开源的数字图像相关(Digital Image Correlation,简称DIC)工具,旨在作为外部应用程序的一个模块或作为一个独立的分析代码。它的主要功能是计算从连续图像序列中提取的全场位移和应变,以及对物体的刚体运动追踪。通常,这些分析图像来自于材料样本的特性实验,但DICe在其他领域也有其独特用途,例如轨迹跟踪。

项目技术分析

DICe采用了高度可移植的设计,支持Windows、Linux和Mac操作系统,并可在高性能计算平台上有效部署(使用MPI并行化和多线程内核并行化)。通过自定义库接口、源代码集成DICe类或者通过独立执行文件,您可以轻松调用DICe的功能。

DICe与其他DIC代码相比,有以下显著特点:

  1. 子集形状可以任意,使您能够跟踪传统方形子集无法处理的长形对象。
  2. 实现了不依赖于图像梯度的稳健单纯形优化方法,适用于无斑点对象、低对比度图像以及小尺寸子集(<10像素)的数据集。
  3. 最后,DICe还包含了一个全局DIC公式,解决了DIC中的鞍点问题所带来的不稳定,这一特性将在未来版本中发布。

更多技术信息,您可以访问项目文档页面:https://github.com/dicengine/dice/tree/master/doc/reports

应用场景与特色

无论您是一位专业的材料科学家,还是对图像处理有兴趣的开发者,DICe都能提供强大的工具帮助您:

  • 材料科学:用于实验数据的全场位移和应变分析,提高材料性质的理解。
  • 工程应用:监测结构变形,评估工程结构的健康状况。
  • 研究教育:教学材料力学、实验设计和数据分析。
  • 运动追踪:如体育赛事中的运动员动作捕捉,物体轨迹分析等。

DICe的特点在于其灵活的子集形状、无需梯度的优化算法以及稳定全局DIC公式,使其在多种环境下表现出卓越的性能。

获取与贡献

您可以在项目发布页找到Windows和Mac的安装包,而Linux用户需按照文档自行编译。想深入了解DICe,可以通过在线教程iDICs提供的资源来学习。

如果您希望贡献代码或报告问题,请利用问题链接,并遵循项目的开发指南,以保证高质量的软件标准。

最后,当您使用DICe进行研究时,别忘了引用DICe的参考文献:

DZ Turner,Digital Image Correlation Engine (DICe) 参考手册,Sandia 报告,SAND2015-10606 O,2015

现在,就加入DICe的探索之旅,开启您的数字图像相关分析新历程吧!

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
609
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
184
34
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0