探索未来的DIC技术:DICe,您的图像相关分析利器!
项目简介
DICe(发音为“die”,意为掷骰子)是一个开源的数字图像相关(Digital Image Correlation,简称DIC)工具,旨在作为外部应用程序的一个模块或作为一个独立的分析代码。它的主要功能是计算从连续图像序列中提取的全场位移和应变,以及对物体的刚体运动追踪。通常,这些分析图像来自于材料样本的特性实验,但DICe在其他领域也有其独特用途,例如轨迹跟踪。
项目技术分析
DICe采用了高度可移植的设计,支持Windows、Linux和Mac操作系统,并可在高性能计算平台上有效部署(使用MPI并行化和多线程内核并行化)。通过自定义库接口、源代码集成DICe类或者通过独立执行文件,您可以轻松调用DICe的功能。
DICe与其他DIC代码相比,有以下显著特点:
- 子集形状可以任意,使您能够跟踪传统方形子集无法处理的长形对象。
- 实现了不依赖于图像梯度的稳健单纯形优化方法,适用于无斑点对象、低对比度图像以及小尺寸子集(<10像素)的数据集。
- 最后,DICe还包含了一个全局DIC公式,解决了DIC中的鞍点问题所带来的不稳定,这一特性将在未来版本中发布。
更多技术信息,您可以访问项目文档页面:https://github.com/dicengine/dice/tree/master/doc/reports
应用场景与特色
无论您是一位专业的材料科学家,还是对图像处理有兴趣的开发者,DICe都能提供强大的工具帮助您:
- 材料科学:用于实验数据的全场位移和应变分析,提高材料性质的理解。
- 工程应用:监测结构变形,评估工程结构的健康状况。
- 研究教育:教学材料力学、实验设计和数据分析。
- 运动追踪:如体育赛事中的运动员动作捕捉,物体轨迹分析等。
DICe的特点在于其灵活的子集形状、无需梯度的优化算法以及稳定全局DIC公式,使其在多种环境下表现出卓越的性能。
获取与贡献
您可以在项目发布页找到Windows和Mac的安装包,而Linux用户需按照文档自行编译。想深入了解DICe,可以通过在线教程和iDICs提供的资源来学习。
如果您希望贡献代码或报告问题,请利用问题链接,并遵循项目的开发指南,以保证高质量的软件标准。
最后,当您使用DICe进行研究时,别忘了引用DICe的参考文献:
DZ Turner,Digital Image Correlation Engine (DICe) 参考手册,Sandia 报告,SAND2015-10606 O,2015
现在,就加入DICe的探索之旅,开启您的数字图像相关分析新历程吧!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00