探索未来的DIC技术:DICe,您的图像相关分析利器!
项目简介
DICe(发音为“die”,意为掷骰子)是一个开源的数字图像相关(Digital Image Correlation,简称DIC)工具,旨在作为外部应用程序的一个模块或作为一个独立的分析代码。它的主要功能是计算从连续图像序列中提取的全场位移和应变,以及对物体的刚体运动追踪。通常,这些分析图像来自于材料样本的特性实验,但DICe在其他领域也有其独特用途,例如轨迹跟踪。
项目技术分析
DICe采用了高度可移植的设计,支持Windows、Linux和Mac操作系统,并可在高性能计算平台上有效部署(使用MPI并行化和多线程内核并行化)。通过自定义库接口、源代码集成DICe类或者通过独立执行文件,您可以轻松调用DICe的功能。
DICe与其他DIC代码相比,有以下显著特点:
- 子集形状可以任意,使您能够跟踪传统方形子集无法处理的长形对象。
- 实现了不依赖于图像梯度的稳健单纯形优化方法,适用于无斑点对象、低对比度图像以及小尺寸子集(<10像素)的数据集。
- 最后,DICe还包含了一个全局DIC公式,解决了DIC中的鞍点问题所带来的不稳定,这一特性将在未来版本中发布。
更多技术信息,您可以访问项目文档页面:https://github.com/dicengine/dice/tree/master/doc/reports
应用场景与特色
无论您是一位专业的材料科学家,还是对图像处理有兴趣的开发者,DICe都能提供强大的工具帮助您:
- 材料科学:用于实验数据的全场位移和应变分析,提高材料性质的理解。
- 工程应用:监测结构变形,评估工程结构的健康状况。
- 研究教育:教学材料力学、实验设计和数据分析。
- 运动追踪:如体育赛事中的运动员动作捕捉,物体轨迹分析等。
DICe的特点在于其灵活的子集形状、无需梯度的优化算法以及稳定全局DIC公式,使其在多种环境下表现出卓越的性能。
获取与贡献
您可以在项目发布页找到Windows和Mac的安装包,而Linux用户需按照文档自行编译。想深入了解DICe,可以通过在线教程和iDICs提供的资源来学习。
如果您希望贡献代码或报告问题,请利用问题链接,并遵循项目的开发指南,以保证高质量的软件标准。
最后,当您使用DICe进行研究时,别忘了引用DICe的参考文献:
DZ Turner,Digital Image Correlation Engine (DICe) 参考手册,Sandia 报告,SAND2015-10606 O,2015
现在,就加入DICe的探索之旅,开启您的数字图像相关分析新历程吧!
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04