NeuralProphet中使用SGD优化器导致预测结果为NaN的问题分析
2025-06-16 22:05:02作者:廉彬冶Miranda
问题背景
在时间序列预测领域,NeuralProphet作为Prophet的神经网络扩展版本,提供了更灵活的建模能力。近期有用户反馈在使用NeuralProphet进行模型调优时遇到了一个特殊问题:当使用SGD(随机梯度下降)作为优化器时,模型训练过程中出现了NaN指标值,最终预测结果也全部为NaN,而使用AdamW优化器时则表现正常。
问题现象
用户在使用NeuralProphet进行模型训练时,观察到以下现象:
- 当设置
optimizer="AdamW"
时,模型训练和预测都能正常工作 - 当切换为
optimizer="SGD"
时,fit()
方法返回的指标值全部为NaN - 对应的
predict()
方法产生的预测值也全部为NaN - 两种情况下都设置了
learning_rate=None
技术分析
优化器选择的影响
SGD(随机梯度下降)和AdamW是深度学习中常用的两种优化算法,它们有着不同的特性和适用场景:
-
SGD优化器:
- 是最基础的梯度下降算法
- 计算简单,内存占用小
- 对学习率非常敏感
- 容易陷入局部最优
- 需要仔细调整学习率和其他超参数
-
AdamW优化器:
- 是Adam优化器的改进版本
- 自适应调整学习率
- 对初始学习率的选择不太敏感
- 通常能更快收敛
- 内存占用较大
问题根源
当使用SGD优化器时出现NaN值,通常有以下几种可能原因:
- 学习率设置不当:SGD对学习率非常敏感,过大的学习率会导致参数更新幅度过大,数值溢出
- 梯度爆炸:在训练过程中梯度变得非常大,导致参数更新后数值超出表示范围
- 数据问题:输入数据包含异常值或NaN值
- 模型初始化问题:参数初始化不当导致数值不稳定
在NeuralProphet的上下文中,当learning_rate=None
时,框架会为不同优化器设置默认学习率。对于SGD来说,默认学习率可能过大,导致训练不稳定。
解决方案
根据NeuralProphet开发者的建议,当手动选择优化方法时,应当:
- 显式设置学习率:不要依赖默认值,根据模型复杂度调整合适的学习率
- 调整训练周期:可能需要增加epoch数量,因为SGD通常收敛较慢
- 调整批量大小:尝试不同的batch size以找到稳定训练的配置
- 使用学习率调度:考虑使用学习率衰减策略,如StepLR或CosineAnnealing
实践建议
对于时间序列预测任务,建议采取以下步骤:
- 优先使用自适应优化器:如Adam或AdamW,它们对超参数不太敏感
- 如需使用SGD:
- 从较小的学习率开始(如0.001)
- 监控训练过程中的损失变化
- 逐步调整学习率直到找到稳定值
- 添加梯度裁剪:防止梯度爆炸
- 检查数据预处理:确保输入数据经过适当标准化
总结
在NeuralProphet中使用SGD优化器时出现NaN预测值的问题,主要源于优化器特性和学习率设置的配合不当。理解不同优化算法的特性并根据任务需求进行适当配置,是获得良好预测结果的关键。对于大多数时间序列预测任务,自适应优化器如AdamW通常是更稳妥的选择,而使用SGD则需要更细致的超参数调优。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K