Delbot 项目使用教程
2024-09-10 17:02:09作者:霍妲思
1. 项目的目录结构及介绍
Delbot 项目的目录结构如下:
delbot/
├── delbot-core/
│ ├── src/
│ │ ├── index.ts
│ │ └── ...
│ ├── package.json
│ └── README.md
├── delbot-training/
│ ├── src/
│ │ ├── index.ts
│ │ └── ...
│ ├── package.json
│ └── README.md
├── delbot-example/
│ ├── src/
│ │ ├── index.ts
│ │ └── ...
│ ├── package.json
│ └── README.md
├── trained-models/
│ ├── model1.json
│ └── model2.json
├── .editorconfig
├── .gitignore
├── LICENSE.md
├── README.md
└── ...
目录结构介绍
- delbot-core/: 这是 Delbot 项目的核心模块,包含了加载现有模型并使用它的所有功能。
- delbot-training/: 这个模块用于从零开始训练新模型,使用了
delbot-core中的功能。 - delbot-example/: 这是一个示例模块,展示了如何在不进行训练的情况下使用 Delbot。
- trained-models/: 这个目录包含了预训练的模型文件,可以直接在
delbot-core中使用。 - .editorconfig: 编辑器配置文件,用于统一代码风格。
- .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
- LICENSE.md: 项目的开源许可证文件。
- README.md: 项目的说明文件,包含了项目的基本信息和使用指南。
2. 项目的启动文件介绍
Delbot 项目的启动文件主要位于 delbot-core/src/index.ts 和 delbot-training/src/index.ts 中。
delbot-core/src/index.ts
这是 Delbot 核心模块的入口文件,主要负责加载和使用预训练模型。以下是该文件的主要功能:
import * as tf from '@tensorflow/tfjs';
import * as delbot from '@chrisgdt/delbot-mouse';
// 加载预训练模型
const model = delbot.Models.rnn3;
// 使用模型进行预测
const prediction = model.predict(inputData);
delbot-training/src/index.ts
这是 Delbot 训练模块的入口文件,主要负责训练新模型。以下是该文件的主要功能:
import * as tf from '@tensorflow/tfjs';
import * as delbotrain from '@chrisgdt/delbot-training';
// 初始化训练数据
const trainingData = ...;
// 开始训练
delbotrain.train(trainingData);
3. 项目的配置文件介绍
Delbot 项目的配置文件主要包括 package.json 和 .editorconfig。
package.json
每个模块(delbot-core、delbot-training、delbot-example)都有一个 package.json 文件,用于管理模块的依赖和脚本。以下是一个示例:
{
"name": "delbot-core",
"version": "1.0.0",
"description": "Core module for Delbot",
"main": "src/index.ts",
"scripts": {
"start": "ts-node src/index.ts",
"build": "tsc"
},
"dependencies": {
"@tensorflow/tfjs": "^4.0.0",
"@chrisgdt/delbot-mouse": "^1.1.2"
},
"devDependencies": {
"ts-node": "^10.4.0",
"typescript": "^4.5.2"
}
}
.editorconfig
.editorconfig 文件用于统一代码风格,确保不同开发者使用相同的编码规范。以下是一个示例:
root = true
[*]
indent_style = space
indent_size = 2
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = true
通过以上配置,可以确保项目在不同开发环境中保持一致的代码风格。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
470
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
718
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
209
84
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1