Bounding Mesh 开源项目教程
1. 项目介绍
Bounding Mesh 是一个用于生成包围网格(Bounding Mesh)和包围凸分解(Bounding Convex Decomposition)的库和工具集。包围网格是一种简单的网格,用于包围更复杂的网格。通过使用包围网格和包围凸分解,可以比传统的广义包围盒(如包围盒、球体或凸包)更精确地近似几何模型。
该项目的主要功能包括:
- 减少网格复杂度,限制顶点数量或网格误差。
- 支持多种标准3D几何文件格式的导入和导出(如.off, .obj, .stl, .wrl)。
- 通过连续的边折叠进行简化。
- 支持多种算法来估计简化误差。
- 提供交互式GUI。
2. 项目快速启动
2.1 环境准备
首先,确保你的系统已经安装了以下依赖库:
- Eigen(线性代数库)
- Coin3D(用于加载.wrl文件)
- QT4 和 SoQT4(用于GUI应用)
- QHull 和 CGAL(用于凸体相关模块)
在Ubuntu系统上,可以使用以下命令安装依赖:
sudo apt-get install build-essential cmake-curses-gui libcoin60-dev libeigen3-dev libqt4-dev libqt4-opengl-dev libsoqt4-dev libqhull6 libqhull-dev
2.2 下载和编译项目
-
克隆项目仓库:
git clone https://github.com/gaschler/bounding-mesh.git cd bounding-mesh
-
创建并进入构建目录:
mkdir Release cd Release
-
使用CMake配置和编译项目:
cmake .. make
2.3 使用命令行工具
编译完成后,可以使用命令行工具生成包围网格:
./boundingmesh [options] FilenameIn [FilenameOut]
例如,简化一个.off文件并输出结果:
./boundingmesh -d Outward -v 1000 input.off output.off
3. 应用案例和最佳实践
3.1 机器人碰撞检测
在机器人碰撞检测中,使用包围网格可以显著提高检测速度。通过生成包围网格,可以在实时环境中快速检测机器人与环境的碰撞。
3.2 计算机图形学算法加速
在计算机图形学中,如光线追踪和运动规划,使用包围网格可以加速算法的执行。通过减少网格的复杂度,可以显著提高算法的效率。
3.3 3D模型简化
在3D模型的存储和传输中,使用包围网格可以减少模型的复杂度,从而减少存储空间和传输时间。
4. 典型生态项目
4.1 Robotics Library
Robotics Library 是一个开源的机器人软件库,Bounding Mesh 可以作为其几何处理模块的一部分,用于机器人模型的简化和管理。
4.2 three.js
three.js 是一个用于在网页上创建3D图形的JavaScript库,Bounding Mesh 可以用于简化3D模型,从而提高网页加载速度和渲染性能。
4.3 CGAL
CGAL(Computational Geometry Algorithms Library)是一个计算几何算法库,Bounding Mesh 可以与其结合使用,提供更高效的几何模型处理功能。
通过以上模块的介绍和实践,你可以快速上手并应用 Bounding Mesh 项目,提升你的3D模型处理和计算机图形学算法的效率。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++026Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









