Plotly.py 6.0.0版本中px.pie函数参数冲突问题解析
在最新发布的Plotly.py 6.0.0版本中,开发者发现了一个值得注意的问题:当同时使用names和category_order参数创建饼图时,会触发polars.exceptions.ColumnNotFoundError异常。这个问题源于内部数据处理逻辑的一个硬编码错误。
问题现象
当开发者尝试使用以下代码创建饼图时:
import plotly.express as px
import polars as pl
df = pl.DataFrame({
"status": ["On Route", "Pending", "Waiting Result", "Delivered"],
"count": [28, 10, 73, 8]
})
fig = px.pie(
data_frame=df,
values="count",
names="status",
category_orders={"status": ["Pending", "Waiting Result", "On Route", "Delivered"]}
)
系统会抛出ColumnNotFoundError异常,提示找不到名为"b"的列。这个错误直接影响了需要使用分类排序功能的饼图绘制场景。
技术分析
深入查看Plotly.py的源代码,可以发现问题的根源在于process_dataframe_pie函数中的硬编码列名。该函数原本应该使用names参数指定的列名进行数据处理,但却错误地使用了硬编码的"b"作为列名。
具体来说,在数据处理过程中,函数尝试创建一个临时列用于排序,但在指定列名时没有正确引用用户提供的names参数,而是直接使用了"b"这个硬编码值。这导致了当数据框中不存在"b"列时,Polars引擎抛出列未找到异常。
临时解决方案
在官方修复发布前,开发者可以采用以下几种临时解决方案:
-
版本降级:将Plotly.py版本固定在5.24.1,这是最后一个没有此问题的版本
pip install plotly==5.24.1 -
预处理数据:在传入px.pie前手动对数据框进行排序,并禁用内部排序
df = df.sort("status") # 按需要的顺序预处理排序 fig = px.pie(df, values="count", names="status") fig.update_traces(sort=False) # 禁用内部排序 -
使用底层API:直接使用graph_objects的Pie类创建图表
import plotly.graph_objects as go fig = go.Figure(go.Pie( values=df["count"], labels=df["status"], sort=False ))
问题修复
核心开发团队已经确认了这个问题,并定位到了具体的错误提交。修复方案是将硬编码的"b"替换为正确的names参数引用。预计这个问题将在下一个补丁版本中得到解决。
最佳实践建议
对于依赖Plotly进行数据可视化的项目,建议:
- 在升级到6.x版本前,充分测试饼图功能
- 考虑在CI/CD流程中加入针对此场景的测试用例
- 关注Plotly的版本更新日志,及时获取修复信息
这个问题虽然影响范围有限,但提醒我们在使用数据可视化库时,需要注意参数之间的潜在冲突,特别是在涉及数据排序和分类的场景下。保持对库版本变化的关注,并建立适当的测试机制,可以帮助我们及早发现和规避类似问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00