Plotly.py 6.0.0版本中px.pie函数参数冲突问题解析
在最新发布的Plotly.py 6.0.0版本中,开发者发现了一个值得注意的问题:当同时使用names和category_order参数创建饼图时,会触发polars.exceptions.ColumnNotFoundError异常。这个问题源于内部数据处理逻辑的一个硬编码错误。
问题现象
当开发者尝试使用以下代码创建饼图时:
import plotly.express as px
import polars as pl
df = pl.DataFrame({
"status": ["On Route", "Pending", "Waiting Result", "Delivered"],
"count": [28, 10, 73, 8]
})
fig = px.pie(
data_frame=df,
values="count",
names="status",
category_orders={"status": ["Pending", "Waiting Result", "On Route", "Delivered"]}
)
系统会抛出ColumnNotFoundError异常,提示找不到名为"b"的列。这个错误直接影响了需要使用分类排序功能的饼图绘制场景。
技术分析
深入查看Plotly.py的源代码,可以发现问题的根源在于process_dataframe_pie函数中的硬编码列名。该函数原本应该使用names参数指定的列名进行数据处理,但却错误地使用了硬编码的"b"作为列名。
具体来说,在数据处理过程中,函数尝试创建一个临时列用于排序,但在指定列名时没有正确引用用户提供的names参数,而是直接使用了"b"这个硬编码值。这导致了当数据框中不存在"b"列时,Polars引擎抛出列未找到异常。
临时解决方案
在官方修复发布前,开发者可以采用以下几种临时解决方案:
-
版本降级:将Plotly.py版本固定在5.24.1,这是最后一个没有此问题的版本
pip install plotly==5.24.1 -
预处理数据:在传入px.pie前手动对数据框进行排序,并禁用内部排序
df = df.sort("status") # 按需要的顺序预处理排序 fig = px.pie(df, values="count", names="status") fig.update_traces(sort=False) # 禁用内部排序 -
使用底层API:直接使用graph_objects的Pie类创建图表
import plotly.graph_objects as go fig = go.Figure(go.Pie( values=df["count"], labels=df["status"], sort=False ))
问题修复
核心开发团队已经确认了这个问题,并定位到了具体的错误提交。修复方案是将硬编码的"b"替换为正确的names参数引用。预计这个问题将在下一个补丁版本中得到解决。
最佳实践建议
对于依赖Plotly进行数据可视化的项目,建议:
- 在升级到6.x版本前,充分测试饼图功能
- 考虑在CI/CD流程中加入针对此场景的测试用例
- 关注Plotly的版本更新日志,及时获取修复信息
这个问题虽然影响范围有限,但提醒我们在使用数据可视化库时,需要注意参数之间的潜在冲突,特别是在涉及数据排序和分类的场景下。保持对库版本变化的关注,并建立适当的测试机制,可以帮助我们及早发现和规避类似问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00