MixFormerV2 开源项目使用教程
2024-09-21 21:33:44作者:魏侃纯Zoe
1. 项目介绍
MixFormerV2 是一个高效的全 Transformer 跟踪模型,由南京大学多媒体计算研究组(MCG-NJU)开发。该项目在 NeurIPS 2023 上被接受,并因其高效的跟踪性能和简洁的架构设计而受到关注。MixFormerV2 完全基于 Transformer 架构,没有任何密集卷积操作和复杂的得分预测模块,使其在 GPU 和 CPU 平台上都能实现高效的部署。
主要特点
- 全 Transformer 架构:没有任何密集卷积操作和复杂的得分预测模块。
- 高效性:在多个基准测试中表现出色,同时保持高速的推理速度。
- 简洁性:模型设计简洁,易于理解和使用。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Anaconda。然后创建并激活一个新的环境:
conda create -n mixformer2 python=3.6
conda activate mixformer2
安装依赖
克隆项目并安装所需的依赖包:
git clone https://github.com/MCG-NJU/MixFormerV2.git
cd MixFormerV2
bash install_requirements.sh
数据准备
将跟踪数据集放置在 /data 目录下,目录结构应如下所示:
$[MixFormerV2_ROOT]
-- data
-- lasot
|-- airplane
|-- basketball
|-- bear
-- got10k
|-- test
|-- train
|-- val
-- coco
|-- annotations
|-- train2017
-- trackingnet
|-- TRAIN_0
|-- TRAIN_1
|-- TRAIN_11
|-- TEST
设置项目路径
运行以下命令设置项目路径:
python tracking/create_default_local_file.py --workspace_dir . --data_dir /data --save_dir .
训练模型
使用多个 GPU 进行分布式训练:
bash tracking/train_mixformer.sh
测试模型
在基准测试上评估模型性能:
bash tracking/test_mixformer.sh
3. 应用案例和最佳实践
应用案例
MixFormerV2 可以广泛应用于视频监控、自动驾驶、无人机跟踪等领域。其高效的跟踪性能和简洁的架构设计使其在这些应用中表现出色。
最佳实践
- 数据预处理:确保数据集的格式和路径正确,以避免训练和测试过程中的错误。
- 模型优化:根据具体应用场景调整模型参数,以达到最佳的跟踪效果。
- 多平台部署:利用 MixFormerV2 在 GPU 和 CPU 上的高效性,灵活选择部署平台。
4. 典型生态项目
相关项目
- MixViT:MixFormerV2 的前身,基于混合注意力机制的视觉跟踪模型。
- SiamMask:基于 Siamese 网络的实时目标跟踪和分割模型。
- TransT:基于 Transformer 的单目标跟踪模型,具有高效的特征提取能力。
生态集成
MixFormerV2 可以与上述项目结合使用,进一步提升跟踪性能。例如,可以将 MixFormerV2 的跟踪结果作为输入,进一步进行目标分割或分类。
通过本教程,您应该能够快速上手使用 MixFormerV2 进行目标跟踪任务。希望这个项目能为您的研究和应用带来帮助!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.9 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1