MovingPandas 示例项目教程
2024-09-17 16:32:16作者:宣聪麟
1. 项目介绍
MovingPandas 是一个基于 Python 的库,专门用于移动数据(如轨迹数据)的探索和分析。它扩展了 GeoPandas 和 Pandas,提供了处理和分析移动对象轨迹的功能。MovingPandas 适用于多种应用场景,如动物迁徙、车辆追踪、地理信息系统(GIS)等。
2. 项目快速启动
安装 MovingPandas
首先,确保你已经安装了 Conda 和 mamba。然后,按照以下步骤进行安装:
# 克隆 MovingPandas 示例仓库
git clone https://github.com/movingpandas/movingpandas-examples.git
# 进入克隆的目录
cd movingpandas-examples
# 使用 mamba 创建环境并安装依赖
mamba env create -f environment.yml
# 激活环境
conda activate mpd-ex
# 启动 Jupyter Notebook
jupyter notebook
运行示例代码
在 Jupyter Notebook 中,打开 1-tutorials/1-getting-started.ipynb 文件,运行其中的代码块以快速了解 MovingPandas 的基本功能。
import movingpandas as mpd
import geopandas as gpd
from shapely.geometry import Point
import pandas as pd
# 创建一个简单的轨迹数据
df = pd.DataFrame([
{'geometry': Point(0, 0), 't': pd.Timestamp('2018-01-01 00:00:00')},
{'geometry': Point(6, 0), 't': pd.Timestamp('2018-01-01 00:06:00')},
{'geometry': Point(6, 6), 't': pd.Timestamp('2018-01-01 00:10:00')}
]).set_index('t')
# 转换为 GeoDataFrame
gdf = gpd.GeoDataFrame(df, crs="EPSG:4326")
# 创建轨迹对象
traj = mpd.Trajectory(gdf, 1)
# 打印轨迹信息
print(traj)
3. 应用案例和最佳实践
案例1:鸟类迁徙分析
MovingPandas 可以用于分析鸟类的迁徙路径和速度。通过加载 GPS 数据,可以计算鸟类的飞行速度、停留时间等指标。
案例2:车辆轨迹分析
在物流和交通管理中,MovingPandas 可以用于分析车辆的行驶轨迹,识别拥堵路段、计算行驶时间等。
最佳实践
- 数据预处理:在分析前,确保轨迹数据的时间戳和空间坐标是准确的。
- 轨迹分割:根据需求将长轨迹分割成多个子轨迹,便于分析。
- 速度计算:使用 MovingPandas 提供的功能计算轨迹点的速度和加速度。
4. 典型生态项目
GeoPandas
GeoPandas 是 MovingPandas 的基础库,提供了地理空间数据处理的功能。
Pandas
Pandas 是 Python 中用于数据处理的库,MovingPandas 扩展了 Pandas 的功能,使其能够处理时间序列和地理空间数据。
Shapely
Shapely 是一个用于处理几何对象的 Python 库,MovingPandas 使用 Shapely 进行空间操作和分析。
通过结合这些生态项目,MovingPandas 能够提供强大的移动数据分析能力。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 移动端HTML医疗影像DICOM在线浏览解决方案:零足迹医疗图像查看器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
208
220
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
287
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
215
仓颉编程语言运行时与标准库。
Cangjie
134
873