FusionCache 缓存指标异常问题分析与优化方案
2025-06-28 23:01:33作者:柏廷章Berta
问题背景
在分布式缓存系统FusionCache的使用过程中,开发者发现部分缓存指标(如cache.miss、cache.set和cache.get_or_set)在某些场景下会出现异常数值。具体表现为当连续调用GetOrSet方法时,第二次调用会错误地记录一次额外的miss和set事件,而实际上缓存命中应该已经发生。
问题现象
当对同一个键连续执行三次GetOrSet操作时,指标记录如下:
- 第一次调用:正确记录1次miss和1次set
- 第二次调用:错误地记录1次miss和1次set,同时记录1次hit
- 第三次调用:正确记录1次hit
理想情况下,三次调用应该总共记录1次miss、1次set和2次hit。
根本原因分析
经过深入分析,发现问题源于FusionCache的清除(Clear)机制实现方式。FusionCache通过特殊的标签(Tagging)机制支持缓存清除功能,具体实现依赖两个特殊标签:"__fc:t:!"和"__fc:t:*"。
当缓存条目被找到时,系统需要检查这两个标签是否在条目保存后被清除过。这种检查会导致额外的缓存操作:
- 第一次GetOrSet:正常miss后set
- 第二次GetOrSet:
- 找到缓存条目
- 检查"__fc:t:*"标签(产生额外miss和set)
- 确认条目有效后返回(记录hit)
- 第三次GetOrSet:由于内部优化,不再重复检查,直接返回缓存命中
优化方案
项目维护者在了解问题后实施了以下优化措施:
- 优化标签检查逻辑:在特定情况下(如未使用标签功能时)跳过不必要的标签检查
- 减少冗余操作:通过内部状态管理避免重复的清除检查
- 性能提升:减少了不必要的缓存访问操作
验证结果
在v2.2.0-preview-1版本中,开发者确认问题已解决:
- 不再出现额外的miss和set事件
- 指标记录符合预期行为
- 系统整体性能得到提升
技术启示
- 监控指标的准确性:缓存系统的监控指标需要特别关注底层实现细节,避免因内部机制导致数据失真
- 性能与功能的平衡:在实现高级功能(如标签、清除)时,需要考虑对核心功能的影响
- 渐进式优化:通过问题反馈不断优化系统实现,逐步提升性能
最佳实践建议
- 对于不使用标签功能的场景,可以考虑禁用相关检查以获得最佳性能
- 监控缓存指标时,应了解底层实现机制以避免误判
- 及时更新到最新版本以获取性能优化和改进
该问题的解决过程展示了开源社区协作的优势,通过用户反馈和开发者响应的良性互动,共同提升了FusionCache的质量和性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134