ModelContextProtocol C SDK中同一进程内客户端与服务端通信的解决方案
背景介绍
在使用ModelContextProtocol C# SDK进行开发时,开发者Chrisdf遇到了一个典型问题:当尝试在同一进程内同时运行客户端和服务端时,系统会出现挂起现象。这种情况在需要构建自包含应用程序时尤为常见,特别是在Unity游戏开发环境中。
问题现象
开发者最初尝试通过以下方式启动服务端:
await _host.StartAsync(); // 非阻塞方式启动主机
然而,这种实现方式导致了服务端在接收到客户端消息后出现挂起,无法继续处理后续请求。这种情况在两种传输方式下都会出现:
- 使用TCP回环(loopback)通信
- 使用内存管道(in-memory pipe)通信
根本原因分析
经过项目维护者stephentoub的诊断,发现问题出在服务端的启动方式上。正确的做法应该是使用RunAsync方法而非StartAsync方法来启动服务端。这两种方法在行为上有重要区别:
RunAsync:会启动服务并开始处理传入请求StartAsync:仅准备服务但不自动开始处理请求
解决方案
stephentoub提供了一个完整的工作示例,展示了如何正确地在同一进程内实现客户端与服务端的通信:
// 创建双向通信管道
Pipe clientToServerPipe = new(), serverToClientPipe = new();
// 创建并启动服务端
IMcpServer server = McpServerFactory.Create(
new StreamServerTransport(clientToServerPipe.Reader.AsStream(),
serverToClientPipe.Writer.AsStream()),
new McpServerOptions()
{
Capabilities = new()
{
Tools = new()
{
ToolCollection = [McpServerTool.Create((string arg) => $"Echo: {arg}",
new() { Name = "Echo" })]
}
}
});
_ = server.RunAsync(); // 关键点:使用RunAsync而非StartAsync
// 创建客户端
IMcpClient client = await McpClientFactory.CreateAsync(
new StreamClientTransport(clientToServerPipe.Writer.AsStream(),
serverToClientPipe.Reader.AsStream()));
// 使用客户端调用服务端功能
var tools = await client.ListToolsAsync();
foreach (var tool in tools)
{
Console.WriteLine($"Tool Name: {tool.Name}");
}
var echo = tools.First(t => t.Name == "Echo");
Console.WriteLine(await echo.InvokeAsync(new()
{
["arg"] = "Hello World"
}));
技术要点
-
管道通信机制:示例中使用了两组Pipe实现全双工通信,这是进程内高效通信的常见模式。
-
服务端配置:通过McpServerOptions可以灵活配置服务端能力,包括工具集合等。
-
工具定义:示例中定义了一个简单的Echo工具,展示了如何创建和注册自定义工具。
-
异步处理:整个通信过程采用异步模式,确保不会阻塞主线程。
实际应用建议
对于需要在Unity等游戏引擎中集成ModelContextProtocol的开发者,建议:
-
将服务端运行在独立的协程中,避免阻塞游戏主线程。
-
考虑使用内存管道通信方式,减少序列化开销。
-
合理设计工具接口,保持每个工具功能的单一性。
-
注意异常处理,特别是在工具调用过程中。
总结
通过正确使用RunAsync方法,开发者可以成功地在同一进程内实现ModelContextProtocol客户端与服务端的通信。这一解决方案不仅解决了最初的挂起问题,还展示了SDK的核心功能和使用模式,为开发者构建自包含应用程序提供了可靠的技术基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00