探秘高效无损压缩:Latent变量Bits Back编码开源实现
项目介绍
这个开源项目源自一篇在ICLR 2019上发表的论文——《实用的无损压缩与潜在变量的Bits Back编码》。作者是Jamie Townsend和Tom Bird。他们提供了一个高效的无损数据压缩框架,通过利用Bits Back编码和潜在变量,实现了比传统方法更优的压缩效果。
项目的核心代码包括低级别的rANS编码和解码函数,以及一些高级功能,如BB-ANS编码和BB-ANS VAE编码。此外,还有针对变分自编码器(VAE)学习和压缩的Python脚本,适用于不同类型的输入数据。
项目技术分析
该项目基于先进的Adaptive Number System (ANS)编码技术,特别是Bits Back编码策略。这种编码方式允许模型不仅对数据的统计特性进行建模,而且还能利用其内在的潜在信息,从而达到更高的压缩效率。项目中的rans.py文件实现了基本的ANS编解码,而util.py则提供了更为复杂的功能,包括BB-ANS编码,这是一种优化了的ANS实现。
此外,项目还包含了两个用于训练VAE的PyTorch模型,分别适用于二值化的MNIST手写数字和非二值化的MNIST数据集。训练好的模型参数存储在torch_vae/saved_params目录下,可以直接用于数据压缩。
项目及技术应用场景
该技术广泛适用于任何需要高效无损压缩的数据场景,例如图像、音频、文本等大数据量的存储和传输。具体到项目中提供的工具,可以用来压缩MNIST手写数字数据集,甚至是更大规模的ImageNet 64x64数据集。benchmark_compressors.py脚本还可以比较不同常见无损压缩算法的性能,帮助用户选择最佳方案。
项目特点
- 创新的编码方式:引入Bits Back编码和潜在变量,提高了无损压缩的效率。
- 灵活性高:支持多种分布的编码和解码,适应性强。
- PyTorch集成:与深度学习框架PyTorch无缝对接,方便训练和应用VAE模型。
- 详尽的基准测试:提供与其他主流压缩算法的性能对比,易于评估效果。
- 易于使用:清晰的代码结构和文档,便于理解和二次开发。
如果你正在寻找一个能够提升数据压缩效率的解决方案,或者想要深入理解Bits Back编码的工作原理,那么这个项目绝对值得你尝试。请按照项目的readme指示运行相关脚本,开启你的高效压缩之旅吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00