探秘高效无损压缩:Latent变量Bits Back编码开源实现
项目介绍
这个开源项目源自一篇在ICLR 2019上发表的论文——《实用的无损压缩与潜在变量的Bits Back编码》。作者是Jamie Townsend和Tom Bird。他们提供了一个高效的无损数据压缩框架,通过利用Bits Back编码和潜在变量,实现了比传统方法更优的压缩效果。
项目的核心代码包括低级别的rANS编码和解码函数,以及一些高级功能,如BB-ANS编码和BB-ANS VAE编码。此外,还有针对变分自编码器(VAE)学习和压缩的Python脚本,适用于不同类型的输入数据。
项目技术分析
该项目基于先进的Adaptive Number System (ANS)编码技术,特别是Bits Back编码策略。这种编码方式允许模型不仅对数据的统计特性进行建模,而且还能利用其内在的潜在信息,从而达到更高的压缩效率。项目中的rans.py文件实现了基本的ANS编解码,而util.py则提供了更为复杂的功能,包括BB-ANS编码,这是一种优化了的ANS实现。
此外,项目还包含了两个用于训练VAE的PyTorch模型,分别适用于二值化的MNIST手写数字和非二值化的MNIST数据集。训练好的模型参数存储在torch_vae/saved_params目录下,可以直接用于数据压缩。
项目及技术应用场景
该技术广泛适用于任何需要高效无损压缩的数据场景,例如图像、音频、文本等大数据量的存储和传输。具体到项目中提供的工具,可以用来压缩MNIST手写数字数据集,甚至是更大规模的ImageNet 64x64数据集。benchmark_compressors.py脚本还可以比较不同常见无损压缩算法的性能,帮助用户选择最佳方案。
项目特点
- 创新的编码方式:引入Bits Back编码和潜在变量,提高了无损压缩的效率。
- 灵活性高:支持多种分布的编码和解码,适应性强。
- PyTorch集成:与深度学习框架PyTorch无缝对接,方便训练和应用VAE模型。
- 详尽的基准测试:提供与其他主流压缩算法的性能对比,易于评估效果。
- 易于使用:清晰的代码结构和文档,便于理解和二次开发。
如果你正在寻找一个能够提升数据压缩效率的解决方案,或者想要深入理解Bits Back编码的工作原理,那么这个项目绝对值得你尝试。请按照项目的readme指示运行相关脚本,开启你的高效压缩之旅吧!
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









