探索深度学习的压缩新境界:And the bit goes down
2024-06-07 14:23:42作者:江焘钦
在这个飞速发展的数字时代,高效的计算资源利用是每个开发者都关注的问题,特别是在深度学习领域。开源项目"And the bit goes down"为我们带来了革命性的神经网络量化方法,它能够在保持高准确度的同时,显著降低模型的大小,从而优化了深度学习模型在各种设备上的运行效率。
项目介绍
这个项目源自一项研究论文,作者们重新审视了神经网络的量化过程,提出了基于矢量量化的新压缩策略。它能够对已训练好的网络进行微调,使其在所有层面上都达到最优的精度。通过这个创新的方法,项目提供了压缩后的ResNet和Mask R-CNN模型,它们在压缩与准确性之间取得了前所未有的平衡。
项目技术分析
项目的核心是其独特的矢量量化技术,与传统方法相比,它采用了全新的目标函数进行权重优化,确保在输入域内实现更好的性能。这种方法可以针对不同类型的卷积层(如3x3标准卷积和1x1点卷积)应用不同的块大小,以实现更精细的压缩。
项目及技术应用场景
该技术适用于任何需要高效运行深度学习模型的场景,包括但不限于:
- 手机端应用:在有限的硬件资源下提供高性能的图像识别服务。
- 边缘计算:在低功耗设备上执行实时的深度学习任务。
- 云计算平台:减小存储需求并提高大规模模型部署的效率。
项目特点
- 高精度:即使在高度压缩的情况下,模型仍然能保持接近原始版本的准确度。
- 灵活性:支持不同类型的卷积层,并可调整块大小以适应特定的压缩需求。
- 易用性:项目提供了易于安装的依赖项和清晰的评估代码,便于快速导入到现有项目中。
- 广泛适用性:不仅限于预训练模型,还能应用于自定义模型的压缩。
为了体验这一创新技术的魅力,只需按照项目提供的安装步骤,加载压缩模型,即可在ImageNet或COCO数据集上轻松进行评估。
项目授权使用Creative Commons Attribution 4.0国际许可,鼓励大家探索和贡献,推动深度学习的边界不断向前。
引用该项目时,请参考以下文献:
@article{
title = {And the bit goes down: Revisiting the quantization of neural networks},
author = {Stock, Pierre and Joulin, Armand and Gribonval, R{\'e}mi and Graham, Benjamin and J{\'e}gou, Herv{\'e}}
journal={arXiv e-prints},
year = {2019}
}
现在就加入这场深度学习压缩的革命,让每一比特发挥最大的价值吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869