TransDepth 项目使用教程
2024-09-20 14:42:17作者:钟日瑜
1. 项目介绍
TransDepth 是一个基于 Transformer 的深度预测模型,旨在解决单目深度预测中的有限感受野问题。该项目结合了卷积神经网络(CNN)和 Transformer 的优势,通过引入基于门控机制的注意力网络,能够在连续像素级别的预测任务中表现出色。TransDepth 主要应用于单目深度预测和表面法线估计,并在多个挑战性数据集上取得了最先进的性能。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.x 和 PyTorch。你可以通过以下命令安装所需的依赖包:
pip install -r requirements.txt
2.2 数据准备
TransDepth 支持 NYU Depth V2 和 KITTI 数据集。你可以通过以下步骤准备数据:
2.2.1 准备 NYU Depth V2 数据集
mkdir -p pytorch/dataset/nyu_depth_v2
python utils/download_from_gdrive.py 1AysroWpfISmm-yRFGBgFTrLy6FjQwvwP pytorch/dataset/nyu_depth_v2/sync.zip
cd pytorch/dataset/nyu_depth_v2
unzip sync.zip
2.2.2 准备 KITTI 数据集
cd dataset
mkdir kitti_dataset
cd kitti_dataset
wget -i kitti_archives_to_download.txt
unzip data_depth_annotated.zip
2.3 模型训练
使用以下命令开始训练模型:
CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_nyu.txt
2.4 模型测试
训练完成后,可以使用以下命令进行模型测试:
CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_nyu.txt
3. 应用案例和最佳实践
3.1 单目深度预测
TransDepth 在单目深度预测任务中表现出色,能够准确预测图像中每个像素的深度值。以下是一个典型的应用案例:
import torch
from transdepth import TransDepthModel
# 加载预训练模型
model = TransDepthModel()
model.load_state_dict(torch.load('pretrained_model.pth'))
# 输入图像
input_image = torch.randn(1, 3, 480, 640) # 假设输入图像大小为 480x640
# 预测深度
with torch.no_grad():
depth_map = model(input_image)
print(depth_map.shape) # 输出深度图的形状
3.2 表面法线估计
TransDepth 还可以用于表面法线估计,通过预测图像中每个像素的法线方向,可以用于三维重建等任务。
# 加载预训练模型
model = TransDepthModel(task='surface_normal')
model.load_state_dict(torch.load('pretrained_surface_normal_model.pth'))
# 输入图像
input_image = torch.randn(1, 3, 480, 640)
# 预测表面法线
with torch.no_grad():
normal_map = model(input_image)
print(normal_map.shape) # 输出法线图的形状
4. 典型生态项目
4.1 BTS (Big-Time Stereo)
BTS 是一个基于深度学习的立体匹配算法,与 TransDepth 结合使用可以进一步提升深度预测的精度。
4.2 TransUNet
TransUNet 是一个基于 Transformer 的医学图像分割模型,与 TransDepth 共享相似的架构设计,可以相互借鉴和优化。
4.3 ViT (Vision Transformer)
ViT 是一个基于 Transformer 的图像分类模型,TransDepth 从中借鉴了 Transformer 的设计思想,提升了模型的全局感知能力。
通过以上教程,你可以快速上手 TransDepth 项目,并在实际应用中取得良好的效果。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
214
234
暂无简介
Dart
661
151
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
294
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
仓颉编程语言开发者文档。
58
817